

MONTAGE- UND BETRIEBSANLEITUNG

GK

Gebläsekonvektoren (Modelle GK 010 - 094)

Inhaltsverzeichnis

1.	Konf	igurations möglich keiten / Zusammen hänge	4
2.	Einle	itung, Sicherheitshinweise, Allgemeines	6
	2.1	Hinweise zu dieser Anleitung	6
	2.2	Sicherheitshinweise	6
	2.3	Bestimmungsgemäße Verwendung	9
	2.4	Hinweise zur Lieferung	10
	2.5	Angaben zu "Einsatzgrenzen"	11
	2.6	Hinweise zur Entsorgung	11
	2.7	Allgemeines	12
	2.8	Modellübersicht	15
3.	Tech	nische Daten	17
	3.1	Übersicht	17
	3.2	Kühl-Leistungsdaten (2- und 4-Leiter)	18
	3.3	Heiz-Leistungsdaten (2-Leiter, Hauptwärmetauscher)	19
	3.4	Heiz-Leistungsdaten (4-Leiter, Zusatzwärmetauscher)	20
	3.5	Luftmengen bei externem statischen Druck	21
	3.6	Druckverlust der Wärmetauscher	23
	3.7	Leistungskurven	24
	3.8	Wasserinhalt der Wärmetauscher	39
	3.9	Elektrische Daten	39
	3.10	Schalldaten	40
4.	Korre	ekturfaktoren	45
	4.1	Korrekturfaktoren für Höhenunterschiede	45
	4.2	Korrekturfaktoren für Glykol	45
5.	Abm	essungen und Anschlüsse	46
	5.1	Abmessungen des Gerätes	46
	5.2	Abmessungen für die Montage	49
	5.3	Mindestabstände	50
	5.4	Gewichte	50
	5.5	Installationsbeispiele	51

6.	Zube	hör	52
	6.1	Elektrisches Zubehör	52
	6.2	Hydraulisches Zubehör	54
	6.3	Luftführungs- und sonstiges Zubehör	57
7.	Mon	tage	64
	7.1	Hinweise zur Installation	64
	7.2	Anforderungen an den Installationsplatz	64
	7.3	Installation des Gerätes	65
	7.4	Anschließen der Wasserversorgung	65
	7.5	Montage externes Ventil	65
	7.6	Anschluss der Kondensatleitung	66
	7.7	Montage externe Kondensatwanne	66
	7.8	Elektrischer Anschluss	67
	7.9	Bauseitige Änderung der Ventilatorstufenbelegung	67
	7.10	Bauseitige Änderung der Wasseranschlussseite	68
8.	Scha	ltplan	69
	8.1	Schaltplan allgemein	69
9.	Inbe	triebnahme	70
10.	Konf	ormitätserklärung	71
11.	Wart	ung	72
12.	Servi	ce	73
	12.1	Störungsbehebung	73
	12.2	Explosionszeichnungen	74

1. Konfigurationsmöglichkeiten/Zusammenhänge

Schalt	tpläne	Schaltpläne		
GK	Seite 69	GK + TCO C	Seite 69	
GK + TCO A	Seite 69	GK + TCO D	Seite 69	
GK + TCO B	Seite 69	GK + TCO E	Seite 69	

Hydraulisches Zubehör (optional)

GKV22 2-Wege-Ventilkit Ein/Aus (2-Leiter)	Seite 54
GKV23 3-Wege-Ventilkit Ein/Aus (2-Leiter)	Seite 54
GKV22M 2-Wege-Ventilkit 0-10 V (2-Leiter)	Seite 54
GKV23M 3-Wege-Ventilkit 0-10 V (2-Leiter)	Seite 54
GKV42 2-Wege-Ventilkit Ein/Aus (4-Leiter)	Seite 54
GKV43 3-Wege-Ventilkit Ein/Aus (4-Leiter)	Seite 54
GKV42M 2-Wege-Ventilkit 0-10 V (4-Leiter)	Seite 54
GKV43M 3-Wege-Ventilkit 0-10 V (4-Leiter)	Seite 54

Elektrisches Zubehör (optional)

Reglerserie TCO	Seite 52
GKMS Relaismodul für Zonenregelung	Seite 53
GKAS Betriebs- und Störmeldemodul	Seite 53
GKEH + GKEHR Elektroheizregister + Relais	Seite 53
GKMEB Minielektrobox	Seite 53
GKTR24 24V-Trafo für 0-10V Ventile	Seite 53
GKPSC Kondensatpumpe	Seite 53
GKZE Zugentlastung	Seite 53

Sonstiges Zubehör (optional)

GKPAEV Mischluftklappe (für die Version VA, VB und VC)	Seite 57
GKPAEH Mischluftklappe (für die Version HA, HB und HC)	Seite 57
GKCZ Satz Füße	Seite 57
GKCZF Satz Füße mit Ansauggitter	Seite 57
GKPAEHF Frischluftansaugöffnung rund	Seite 58
GKPAEM Motor für Klappen	Seite 59
GKPPV Rückwand (für die Versionen VA + GKCZ und VB)	Seite 59
GKPPHA Ansaugverkleidung (für die Version HA)	Seite 59
GKPPHB Ansaugverkleidung (für die Version HB)	Seite 59
GKPM Ausblasplenum mit Rundanschlüssen	Seite 59
GKPM90 90° Ausblasplenum	Seite 60
GKRT Ausblasteleskopanschluss	Seite 60
GKPA Ansaugplenum mit Rundanschluss	Seite 61
GKPAL Multifunktionsansaugplenum	Seite 61
GKCOIB Isolierung für Ausblasplenen	Seite 62
GKGFM Ausblasgitter aus Aluminium (nur für Wandmontage)	Seite 62
GKGFZ Ausblasgitter aus Aluminium (verstellbar nur für Wandmontage)	Seite 62
GKGFA Ausblasgitter aus Aluminium (nur für Wandmontage)	Seite 63
GKFAG3 G3-Filter anstelle G1-Filter	Seite 63
GKHDP Horizontal-/Vertikalinstallation	Seite 63

Die Geräte der Serie GK unterliegen folgenden Sicherheitshinweisen:

ISO 9001

Das Herstellungswerk produziert jedes Produkt nach den strengen Qualitätsrichtlinien ISO 9001 in den Bereichen Design, Entwicklung und Produktion.

CE Sicherheitstandards

Die Geräte der Serie GK sind CE zertifiziert, womit alle notwendigen europäischen Anforderungen an Sicherheit erfüllt werden.

2. Einleitung, Sicherheitshinweise, Allgemeines

2.1 Hinweise zu dieser Anleitung

Diese Anleitung enthält wichtige Informationen zu:

- Transport
- Montage und Installation
- Arbeiten an der Elektrik
- Inbetriebnahme und Wartung
- Entsorgung

Diese Anleitung muss vor der Montage, Inbetriebnahme und Wartung sorgfältig durchgelesen und verstanden werden. Beachten Sie den Inhalt dieser Anleitung, insbesondere die Sicherheitshinweise. Bei Fragen zu dem Produkt oder dieser Anleitung steht Ihnen unsere Hotline oder Ihr Ansprechpartner gerne zur Verfügung. Für Schäden und Betriebsstörungen, die sich aus der Nichtbeachtung dieser Anleitung ergeben, übernehmen wir keine Haftung!

2.2 Sicherheitshinweise

2.2.1 Bedeutung der Warnungen, Hinweise

Achtung!

Gefahrenhinweis – weist Sie auf gefährliche Situationen hin. Vermeiden Sie diese Situationen, sonst könnten Sie oder andere Personen ernsthaft gefährdet werden.

Warnung!

Warnhinweis – weist Sie auf Situationen hin, welche das Gerät oder dessen Umgebung beschädigen könnten.

Hinweis!

Hinweis – weist auf Sachen hin, welche bei der Planung, Auslegung und Verwendung des Gerätes berücksichtigt werden müssen.

Tipp!

Tipp – gibt Tipps, welche die Montage, Inbetriebnahme, Handhabung oder Bedienung erleichtern können.

2.2.2 Sicherheitshinweise

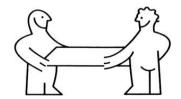
Die folgenden Sicherheitshinweise sind zwingend zu beachten. Geschieht dies nicht, können Schäden an Geräten, deren Umgebung und vor allem auch an Personen nicht ausgeschlossen werden:

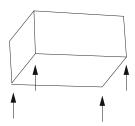
- Das Gerät ausschalten und die Spannungsversorgung trennen, bevor Arbeiten an der elektrischen Einheit, Reinigungs- und Wartungsarbeiten oder andere Arbeiten durchgeführt werden.
- Stellen Sie sicher, dass das Gerät nicht ohne Ihre Kenntnisse wieder unter Spannung gesetzt wird.
- Sämtliche Arbeiten, wie z.B. elektronische oder hydraulische Arbeiten, dürfen nur von qualifiziertem Fachpersonal durchgeführt werden.
- Eigenmächtige Umbauten und Veränderungen sind nicht gestattet, weil hier Gefahr durch elektrischen Schlag oder austretendes Kältemedium bestehen kann. Für Schäden und Betriebsstörungen, die sich aus eigenmächtigen Umbauten und Veränderungen ergeben, übernehmen wir keine Haftung.
- Alle Veränderungen oder Erweiterungen, welche die Sicherheit beeinträchtigen können, einschließlich dem Hinzufügen, Verstellen oder Außerkraftsetzen von Sicherheitseinrichtungen, erfordern die Genehmigung des Herstellers.
- Sämtliche Arbeiten müssen gemäß der geltenden Gesetze, Normen, Bestimmungen und Standards zu Gesundheit und Sicherheit, sowie dem aktuellen Stand der Technik erfolgen.
- Die in dieser Anleitung enthaltenen Schaltpläne beinhalten nicht die Erdung oder andere elektrische Schutzarten, die in den geltenden Gesetzen, Normen, Bestimmungen, Standards zu Gesundheit und Sicherheit oder örtlichen Vorschriften bzw. vom örtlichen Energieversorgungsunternehmen vorgesehen sind.
- Die im Inneren des Gerätes angebrachten Sicherheitsaufkleber und -hinweise dürfen nicht entfernt werden.
 Falls diese nicht mehr leserlich sind, müssen diese ersetzt werden.
- Das qualifizierte Fachpersonal muss in der Lage sein, die erforderlichen Arbeiten zu beurteilen, potentielle Gefahren und Risiken zu erkennen und diese zu vermeiden.
- Diese Anleitung ist Bestandteil des Gerätes, sowie Vertragsbestandteil. Bewahren Sie diese Anleitung deshalb gut auf. Diese Anleitung sollte jedem, der mit diesen Geräten zu tun hat, zugänglich sein. Sollte diese Anleitung verloren gehen, kann diese per Post oder in elektronischer Formerneut angefordert werden.

 Alle in dieser Anleitung enthaltenen Sicherheitshinweise müssen beachtet werden, unabhängig von der Deutlichkeit oder Positionierung der Bekanntmachung.

2.2.3 Sicherheitshinweise für die Installation

- In der Nähe des Gerätes an einer frei zugänglichen Stelle einen Schutzschalter installieren, mit dem die Spannungsversorgung unterbrochen werden kann.
- Stellen Sie sicher, dass das Gerät geerdet ist.


- Das Gerät darf nicht in explosiver oder korrosiver Atmosphäre, an feuchten Orten, im Freien oder in sehr staubiger Umgebung installiert werden.
- Der Raum oberhalb einer eventuell vorhandenen abgehängten Decke muss trocken und gegen eindringende Feuchtigkeit geschützt sein.
- Falls eine Frischluftzufuhr vorgesehen ist, muss darauf geachtet werden, dass im Winter die Rohre des Registers nicht durch Frost beschädigt werden können. Bei der Installation sind ggf. geeignete Maßnahmen vorzusehen.
- Betriebsdruck und -temperatur dürfen auf keinen Fall die angegeben Betriebsgrenzen über- oder unterschreiten.
- Die Luftzuführung oder evtl. vorhandene Luftklappen dürfen auf keinen Fall verstopft oder verlegt werden.
- Das Verpackungsmaterial unbedingt sachgerecht entsorgen. Auf keinen Fall in der Reichweite von Kindern lassen, da es eine potentielle Gefahrenquelle darstellt. Die Entsorgung des Verpackungsmaterials obliegt dem Installateur, nicht dem Hersteller der Geräte.


2.2.4 Sicherheitshinweise für die Arbeitssicherheit

- Es sind stets Arbeitshandschuhe zu tragen.
- Das Gerät muss stets zu zweit befördert werden.

• Das Gerät nur an den dafür vorgesehenen Stellen anfassen, z.B. bei der Installation oder beim Transport.

- Die verwendeten Hebewerkzeuge, wie z.B. Flaschenzug, Hebebühne, Hubwagen, Lastaufzüge oder Kräne, sowie die verwendeten Lastaufnahmemittel, wie z.B. Gurte, Seile oder Ketten, müssen eine ausreichende Tragfähigkeit haben.
- Die verwendeten Hebewerkzeuge, sowie die verwendeten Lastaufnahmemittel müssen zudem in einwandfreiem Zustand sein. Eventuell verwendete Gurte, Seile oder Ketten dürfen nicht verknotet sein oder an scharfen Kanten scheuern.

Hängende Lasten dürfen nicht über Personen hinweggehoben werden. Eine eventuell erforderliche Absperrung dieses Bereiches ist von Fall zu Fall zu prüfen und zu installieren.

2.2.5 Sicherheitshinweise für die Wartung und Reparaturen

- Falls Komponenten ersetzt werden müssen, unbedingt Originalersatzteile verwenden. Dies kann Einfluss auf die Gewährleistung haben.
- Es sind stets Arbeitshandschuhe zu tragen.
- Das Gerät darf erst gewartet werden, wenn die Spannungsversorgung unterbrochen ist. Stellen Sie zudem sicher, dass das Gerät nicht ohne Ihre Kenntnis wieder unter Spannung gesetzt werden kann.

- Die vorhandenen Schutzelemente dürfen erst nach Unterbrechen der Spannungsversorgung entfernt werden.
- Stellen Sie sicher, dass das Ventilatorrad stillsteht.
- Für Reparatur- und Wartungsarbeiten sind die Ventile und alle Absperrorgane im Hydraulikkreis zu schließen, damit nicht unerwartet Wasser aus dem Gerät austreten kann.

- Die Regel- und Sicherheitseinrichtungen der Geräte dürfen ohne vorherige Genehmigung nicht verändert, manipuliert oder außer Kraft gesetzt werden.
- Bei unsachgemäßen Arbeiten am Wasseranschluss, sowie am Wärmetauscher kann Heizmedium austreten und Verbrühungen hervorrufen.
- Alle für die Wartung und Reparatur ausgebauten Verkleidungen und Abdeckungen müssen nach Beendigung der Arbeit wieder eingebaut werden. Sollte die Arbeit über einen längeren Zeitraum unterbrochen werden, ist dies ebenfalls der Fall.

2.2.6 Sicherheitshinweise für den Betrieb

- Das Gerät keinen entzündlichen Gasen aussetzen.
- Keine Gegenstände durch die Luftgitter stecken.
- Keine Gegenstände oder gar die Hände in den Wirkbereich des Ventilators bringen.
- Das Gerät darf nicht mit nackten, nassen oder feuchten Körperteilen berührt werden.
- Das Gerät darf nicht mit Wasser in Berührung kommen.
- Die aus dem Gerät kommenden Stromkabel dürfen nicht gezogen, getrennt oder verdreht werden. Auch nicht dann, wenn das Gerät von der Spannungsversorgung getrennt ist.
- Falls am Installationsort des Gerätes ein besonders kaltes Klima herrscht, muss vor längerem Nichtgebrauch das Wasserrohrnetz entleert werden.

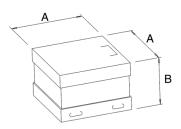
2.3 Bestimmungsgemäße Verwendung

Die Gebläsekonvektoren sind für den Einbau in Büro-, Lagerund Wohnräumen konzipiert. Die Gebläsekonvektoren sind ausschließlich zum Lufterwärmen, -filtern, -kühlen und -entfeuchten für die Raumluftkonditionierung ausgelegt. Jeder andere Gebrauch ist ungeeignet und untersagt.

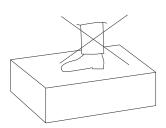
Die Gebläsekonvektoren dürfen nicht eingesetzt werden für:

- Die Aufbereitung der Luft im Freien
- Die Installation in feuchten Räumen
- Die Installation in explosiver Atmosphäre
- Die Installation in korrosiver Atmosphäre

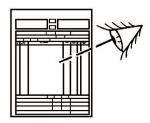
Je nachdem, ob der Raum gekühlt oder geheizt werden muss, werden die Gebläsekonvektoren mit kaltem oder warmem Wasser gespeist.


Der Hersteller/Händler der Geräte haftet nicht für eventuelle Leckagen oder Schäden, die durch die fehlerhafte Installation, falschen Gebrauch oder falsche Wartung der Gebläsekonvektoren, die Nichteinhaltung der in dieser Anleitung enthaltenen Anweisungen oder Vernachlässigung der erforderlichen Inspektionen, Reparaturen und Wartungsarbeiten entstehen.

2.4 Hinweise zur Lieferung


Gewicht und Abmessungen

Modell	Gewicht verpackt (in kg)	Gewicht unverpackt (in kg)	A (in mm)	B (in mm)



Nach der Lieferung kontrollieren:

Das Gerät ist in einem Karton verpackt.

- 1. Nach dem Auspacken kontrollieren, ob das Gerät unbeschädigt ist und dem bestellten Artikel entspricht.
- 2. Wenn das Gerät beschädigt ist oder nicht dem bestellten Artikel entspricht, wenden Sie sich bitte unter Angabe von Seriennummer und Modell an Ihre Niederlassung.

Der Hersteller haftet nicht für Schäden, die durch unsachgemäßen Gebrauch entstehen.

Typenschild

Jedes Gerät ist mit einem Typenschild gekennzeichnet, auf dem die Daten des Herstellers und der Typ des Gerätes angegeben sind.

Lieferumfang

Der Gebläsekonvektor besteht aus den folgenden Teilen:

- Gerät
- Externe Kondensatwanne, komplett mit Montagezubehör
- Montage- und Bedienungsanleitung

2.5 Angaben zu "Einsatzgrenzen"

Die Einsatzgrenzen der Gebläsekonvektoren, der Wärmetauscher und der thermoelektrischen Ventile sind wie folgt:

Gebläsekonvektor und Wärmetauscher

Max. Temperatur des Heizmediums: 80 °C

Min. Temperatur des Kühlmediums: 5 °C

Raumtemperaturen: 18 °C - 30 °C

Versorgungsspannung: 230 V/50 Hz

Energieverbrauch: siehe Typenschild

zulässige Druckstufe: PN 10

Thermoelektrische Ventile

Max. Raumtemperatur: 50 °C

Versorgungsspannung: 230 V/50 Hz (evtl. 24 V)

Verschlusszeit: ca. 180 Sek.

Max. Glykolanteil im Wasser: 35 %

Wasserqualität

Warnung!

Der Einsatz von vollentsalztem Wasser kann zu Korrosion im Wasserkreislauf führen. Muss für das Befüllen der Anlage teil- oder vollentsalztes Wasser verwendet werden, bitte den Hersteller kontaktieren.

Warnung!

Der Hersteller rät zu einer salzarmen Fahrweise nach VDI 2035-2 der Tabelle 1 aus Kapitel 8.1. Die Wasserqualität im Kaltwasser/Heizwassersystem muss in regelmäßigen Abständen kontrolliert und falls notwendig, angepasst werden.

Weitere technische Daten

Alle anderen wichtigen technischen Daten (Abmessungen, Gewichte, Anschlüsse, Geräuschpegel, usw.) finden Sie in dieser technischen Dokumentation, in den Angebotsunterlagen oder im Internet.

- Technische Daten, siehe Seite 17.
- Gewichte und Abmessungen, siehe Seite 17.
- Abmessungen und Anschlüsse, siehe Seite 46.
- Schaltpläne, siehe Seite 69.

Warnung!

Die Geräte der Serie GK sind für einen Anschluss an Luftkanäle entwickelt worden. Die Ventilatoren benötigen einen "Gegendruck" von mind. 50 Pa!

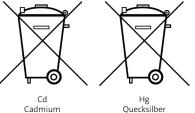
2.6 Hinweise zur Entsorgung

Verbrauchteile und ersetzte Teile müssen vorschriftsmäßig entsorgt werden.

Die geltenden Umweltschutzbestimmungen müssen eingehalten werden. Wenn die geltenden Umweltschutzbedingungen nicht eingehalten werden, kann es zu Verletzungen und Umweltschäden kommen.

Darauf achten, dass umweltgefährdende Stoffe nicht in den Boden oder die Kanalisation gelangen. Umweltgefährdende Stoffe müssen in geeigneten Behältern aufgefangen, aufbewahrt, transportiert und entsorgt werden.

Batteriehinweise


Die optionale IR-Fernbedienung muss mit Batterien betrieben werden, wir bitten Sie diese fachgerecht zu entsorgen.

Sind die Batterien "leer" oder lassen sich die Akkus nicht mehr aufladen, dürfen Sie nicht in den Hausmüll. Altbatterien enthalten möglicherweise Schadstoffe, die Umwelt und Gesundheit schaden können. Bitte geben Sie die Batterien/Akkus im Handel oder an den Recyclinghöfen der Kommunen ab. Die Rückgabe ist unentgeltlich und gesetzlich vorgeschrieben. Bitte werfen Sie nur entladene Batterien in die aufgestellten Behälter und kleben Sie bei Lithium-Batterien die Pole ab.

Alle Batterien und Akkus werden wieder verwertet. So lassen sich wertvolle Rohstoffe wie Eisen, Zink oder Nickel wieder gewinnen. Batterierecycling ist die leichteste Umweltschutzübung der Welt.

Vielen Dank fürs Mitmachen.

Die Mülltonne bedeutet: Batterien und Akkus dürfen nicht in den Hausmüll.

Blei

2.7 Allgemeines

Der Gebläsekonvektor ist für die Klimatisierung von Räumen entwickelt. Der Heiz- oder Kühlvorgang entsteht am Wärmetauscher durch die Luft, welche den Wärmetauscher berührt und so dem Wasser Wärmeenergie entzieht oder zuführt. Ein Ventilator gewährleistet den Luftvolumenstrom über den Wärmetauscher (Register). Dieser Wärmetauscher erhält von einer zentralen Anlage warmes oder kaltes Wasser und gibt die übermäßige Wärme an die Raumluft ab, oder nimmt diese auf.

Wenn der Wärmetauscher mit ausreichend kaltem Wasser versorgt wird, kondensiert die Luftfeuchtigkeit an den Wärmetauscherflächen des Registers. Somit wird die Raumluft entfeuchtet. Der Gebläsekonvektor kann zur Abführung der kondensierten Feuchtigkeit mit entsprechendem Zubehör (Kondensatpumpe) ausgestattet werden.

Ein Gebläsekonvektor muss Folgendes gewährleisten:

- gleichmäßige Nutzung der Oberfläche des Wärmetauschers
- geeignete Luftzufuhr gemäß der Funktionsbedingungen
- gute Isolierung gegen Kondenswasser
- problemloses Abführen des Kondenswassers
- Regulierung des in den Wärmetauscher fließenden Wassers

Die Gebläsekonvektoren der Serie GK bieten zusätzlich:

- Motoren mit veränderbaren Drehzahlen zur optimalen Regulierung der Luftgeschwindigkeit (insgesamt 6-Stufen)
- vollständige Isolierung der von der aufbereiteten Luftberührten Oberfläche
- elektronische Steuerung zur Einstellung der Betriebsmodi

Die vielseitigen Kombinationsmöglichkeiten verschiedener Wärmetauscher mit unterschiedlichen Ventilen und zahlreichen elektromechanischen und elektronischen Regelungen verleihen den Gebläsekonvektoren GK ihre besondere Vielseitigkeit, Zuverlässigkeit und Anpassungsfähigkeit zu unterschiedlichsten Anforderungen im Bereich der Raumklimatisierung.

2.7.1 Die innere Struktur

Die innere Struktur besteht aus verzinktem Blech, Durchmesser 0,8 oder 1 mm, je nach Funktion des Teiles. Auf der hinteren bzw. oberen Seite des Gerätes befinden sich die Ösen zur Wand- bzw. Deckenmontage. Die sechseckige Öse nahe der hydraulischen Anschlüsse dient als Torsionsverhinderung der Register bei zu fester Anspannung. Die externe Kondensatwanne ist unabhängig vom Ventilkit demontierbar. Die Form der Kondensatwanne mit doppelter Schräge ermöglicht den Wasserablauf, sowohl bei horizontal als auch vertikal angebrachtem Gebläsekonvektor.

Alle Komponenten sind mit feuerfestem Material der Klasse M1 isoliert.

2.7.2 Der Wärmetauscher

Der Wärmetauscher besteht aus Kupferrohren mit aufgeprägten Aluminiumlamellen, die einen Abstand von 2,1 mm haben. Die Wasseranschlüsse am Gerät sind zöllige Innengewinde.

Alle Register werden Dichtigkeitsprüfungen mit 18 bar Druck unterzogen und eignen sich bis zu einem maximalen Betriebsdruck von 10 bar (PN10). Die Gebläsekonvektoren GK können zum Betrieb an 4-Leiter-Anlagen mit einem zusätzlichen Heizregister ausgestattet werden.

Die gerippte Form der Aluminiumlamellen in Zusammenhang mit dem Gegenstromprinzip gewährleisten einen wirkungsvollen Temperaturaustausch.

2.7.3 Der Luftansaugfilter

Der Filter aus Nylon (Klasse G1) ist in einen Metallrahmen eingespannt. Eine regelmäßige Filterreinigung garantiert eine dauerhaft gute Leistung des Gerätes. Auf Wunsch und für besondere Einsätze können Filter mit höheren Filterklassen (z.B. G3) geliefert werden.

2.7.4 Die Verkleidung

Die Verkleidung besteht aus Blech und ABS-Elementen. Dieses wird an der internen Struktur mittels Schrauben befestigt und kann in verschiedenen Farben der RAL-Palette lackiert werden (Standardfarbe ist RAL 9010 bei Metall- und RAL 9002 bei ABS-Elementen). Die Luftausblasgitter bestehen aus verformungsbeständigem ABS. Die besondere chemische Zusammensetzung garantiert eine längstmögliche Farbechtheit (weiß, RAL 9002). Die Gitter bewirken eine optimale Verteilung der Luft im Raum. Durch Drehen der Gitter um 180° können Sie die Luftrichtung beeinflussen.

Links und rechts dieser Luftausblasgitter befinden sich Klappen, welche den Zugang zur Regelung (falls im Gerät installiert) sowie zur Hydraulikgruppe ermöglichen. Die Feuerbeständigkeitsklasse der Gitter und Klappen ist UL94 HB.

2.7.5 Die Ventilatoreinheit

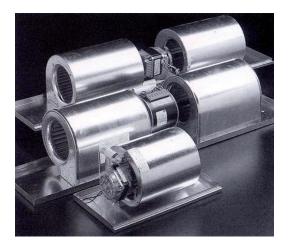
Die Ventilatoreinheit besteht aus einem Blech, auf dem die Ventilatoren und der Motor angebracht sind. Die Motoraufhängungen sind gedämpft, um die Übertragung von Schwingungen und Vibrationen zu vermeiden.

Die Ventilatoren sind zentrifugal mit direkt an der Motorwelle angebrachten Schaufeln. Die Schaufeln bestehen aus verzinktem Blech oder Kunststoff.

Die Standardmotoren sind einphasig (230 V und 50 Hz), können aber auch in 60 Hz-Ausführung geliefert werden. Die Motoren sind mit ständig betriebenem Kondensator und integriertem Thermokontakt mit Schutzgrad IP41 oder 44 ausgerüstet. Die gesamte Ventilatoreinheit ist elektronisch ausgeglichen und kann vom Gebläsekonvektor leicht, unabhängig von den anderen Komponenten, zur Kontrolle und für außerplanmäßige Reinigungen herausgenommen werden.

Alle Ventilatoreinheiten bieten sechs Geschwindigkeiten, drei standardmäßig vorverkabelte und drei alternative (durch Änderung der werkseitigen elektrischen Verdrahtung, siehe Seite 67).

Die sechs Geschwindigkeiten werden mittels eines Stufentransformators bei den Modellen 010 bis 059 betrieben, während bei den Modellen 068 bis 094 die sechs Geschwindigkeiten direkt an der Motorwicklung verkabelt sind.


2.7.6 Die Steuereinheit


Die Steuereinheit enthält die Klemmen zum Anschluss an die Stromversorgung sowie an die extern gelegenen elektrischen Zubehörelemente. Die Steuereinheit kann ohne Probleme auf die gegenüberliegende Anschlussseite montiert werden, ohne die Ventilatoreinheit umbauen zu müssen.

2.7.7 Die externe Kondensatwanne

Die externe Kondensatwanne wird serienmäßig zu allen Gebläsekonvektoren geliefert und besteht aus ABS, mit Feuerbeständigkeitsklasse UL94 HB. Ihre Funktion besteht darin, das Kondenswasser, welches sich um die Ventilgruppen bildet, zu sammeln und abzuleiten.


Die Wannen sind an der Seite des Gebläsekonvektors an den vorgesehenen Plätzen mit Schrauben angebracht. Es wird jedoch empfohlen, die Befestigung abzudichten (z.B. mit Silikon), um eine korrekte Installation sicherzustellen. Das gesammelte Kondensat der externen Kondensatwanne fließt in die interne Kondensatwanne ab.

2.8 Modellübersicht

2.8.1 Übersicht der Ausführungen

2.8.2 Beschreibung der Ausführungen

Die Modelle VA, VB, VL (alle vertikal), sowie die Modelle HA, HB, HL (alle horizontal) haben ein Gehäuse für sichtbare Installationen.

Konstruktionseigenschaften:

- Richtungsverstellbares Ausblasgitter
- in 11 Leistungsgrößen verfügbar
- Register mit 2, 3 oder 4 Rohrreihen (modellabhängig) verfügbar
- Möglichkeit eines Zusatzheizregisters (4-Leiter)
- Farbe der seitlichen Kunststoff Abdeckungen ähnlich RAL 9002
- Farbe der mittigen Metall-Abdeckung ähnlich RAL 9010
- separat abnehmbare Seitenabdeckung für einfache Montage, Wartung oder Reparatur

Die Modelle VC, VD, VE und VF (alle vertikal), sowie die Modelle HC und HD (beide horizontal) werden ohne Gehäuse, für die Installation in der Zwischendecke oderwand geliefert.

Konstruktionseigenschaften:

- In 11 Leistungsgrößen verfügbar
- Register mit 2, 3 oder 4 Rohrreihen (modellabhängig) verfügbar
- Möglichkeit eines Zusatzheizregisters (4-Leiter)

2.8.3 Wahl der Wasseranschlussseite

Die Seite der Wasseranschlüsse kann bei Bestellung gewählt werden. Unter linken Wasseranschlüssen (SX) versteht man Anschlüsse, welche sich bei Blick auf den Luftausblas links vom Gerät befinden.

Diese Konfiguration wird standardmäßig geliefert, sollte keine Angabe über die Wasseranschlussseite bei Bestellung erfolgen. Wird ein rechter Wasseranschluss (DX) benötigt, kann dieses bei Bestellung ohne Mehrpreis realisiert werden. Es ist auch am Montageort im Nachhinein möglich, die Wasseranschlussseite zu ändern. Folgen Sie hierzu bitte dem Kapitel "Ändern der Wasseranschlussseite" auf Seite 68.

3. Technische Daten

3.1 Übersicht

Modell		010	014	018	025	029	037	043	049	059	068	094
Kühlleistung ¹⁾	kW	0,97	1,43	1,81	2,49	2,94	3,67	4,34	4,86	5,88	6,82	9,35
Sensible Kühlleistung	kW	0,93	1,18	1,38	4,08	2,31	2,99	3,32	4,2	4,72	5,48	7,54
Wasserdurchflussmenge	l/h	166,4	246,1	310,7	426,5	504,4	630,1	744	834,7	1008,3	1170,4	1603,9
Druckverlust Kühlen	kPa	1,4	4,7	9,6	5,5	4,4	13,8	11,3	22,8	19,3	9,8	21,2
Heizleistung ²⁾	kW	1,52	2,02	2,33	3,49	4,02	4,88	5,6	6,73	7,89	9,28	12,22
Druckverlust Heizen	kPa	1,9	4,4	7,9	5,1	4,1	11,8	9,3	20,6	16,7	8,7	18,4
Heizleistung ³⁾	kW	2,62	3,43	3,95	5,94	6,81	8,26	9,46	11,43	13,37	15,75	20,71
Wasserdurchflussmenge	l/h	230,2	301,8	346,7	524,4	597,9	726	830,8	1003,8	1174,7	1382,6	1818,2
Druckverlust Heizen	kPa	2,4	5,3	9,3	6,2	4,9	14,1	11	24,7	19,9	10,4	22,1
Nennluftmenge	m³/h	300	300	300	530	530	730	730	1130	1130	1310	1850
Abmessungen	mm			sieh	e Kapitel	"Abmess	ungen un	d Anschlü	isse" Seite	e 46		
Gewichte	kg				sie	he Kapita	l "Gewich	nte" Seite	50			
Spannungsversorgung	V/Ph/Hz						230/1/50					
Leistungsaufnahme Ventilator	W											
Stromaufnahme Ventilator	А				siehe k	Kapitel "E	lektrische	Daten" S	eite 39			
Umdrehungen/Minute												
Schalldruckpegel (n/m/h) ⁴⁾	dB(A)				siehe Ka	pital "Sch	nalldruckd	laten" Sei	te 42/43			
Schallleistungspegel (n/m/h)	dB(A)				siehe Kap	ital "Scha	Illeistung	sdaten" S	eite 40/41			
Wasseranschluss Hauptregister	Zoll						½" IG					
Wasseranschluss Zusatzheizregister	Zoll		½" IG									
Kondensatanschluss	mm			ver	tikales Ge	rät 16 mn	n und hor	izontales	Gerät 20	mm		

¹⁾ Kühlbetrieb: 27 °C/47 % r. F., Kaltwasser Ein/Aus: 7 °C/12 °C (Lüfterstufe max. Standardbelegung)

Luftmengen

Lüfterstufe 010 014 018 025 029 037 043 049 059 068 094 370 330 330 590 590 916 916 1249 1249 1425 2050 1 (5,9)(5,9)(5,9)(9,1)(9,1)(10,0)(10,0)--(8,5)(10,0)Luftvolumenstrom (m³/h) 730* 300* 300* 300* 530* 530* 730* 1130* 1130* 1310* 1850* 2 (5,4)(5,4)(5,4)(7,5)(7,5)(6,8)(6,8)(10,0)(10,0)(7,5)(8,6)1220* 250* 255 445 445* 1050* 1050* 1600* 255 657 657 3 (4,0)(4,1)(4,1)(5,9)(5,9)(6,0)(6,0)(9,0)(9,0)(6,8)(7,0)235* 235* 585* 585* 860* 1035* 225 356 356 860* 1400 4 (3,0)(3,1)(3,1)(4,2)(4,2)(5,0)(5,0)(6,8)(6,8)(5,5)(6,0)175* 300 300 175 175 435 435 636 636 822 1250* 5 (2,4) (2,4)(1,5)(1,5)(3,1)(4,7)(4,7)(1,5)(3,1)(4,5)(5,1)156* 286* 156* 286* 390* 390* 394 394 150 688 1050 6 (1,0)(1,1)(1,1)(1,9)(1,9)(2,2)(2,2)(2,2)(2,2)(3,5)(4, 2)

²⁾ Heizbetrieb: 20 °C, PWW Ein/Aus: 20 °C/50 °C Wassermenge wie im Kühlmodus (Lüfterstufe max. Standardbelegung)
3) Heizbetrieb: 20 °C, PWW Ein/Aus: 70 °C/60 °C (Lüfterstufe max. Standardbelegung)
4) n/m/h Geräuschpegel bei niedriger/mittlerer/höchster Ventilatorstufe im Abstand von 1,5 m (Standardbelegung)

3.2 Kühl-Leistungsdaten (2- und 4-Leiter)

Lüfterstufe	Modell		010	014	018	025	029	037
	Kühlleistung*	kW	0,97	1,43	1,81	2,49	2,94	3,67
	Sensible Kühlleistung	kW	0,93	1,18	1,38	4,08	2,31	2,99
max	Wasserdurchflussmenge	l/h	166,4	246,1	310,7	426,5	504,4	630,1
	Druckverlust	kPa	1,4	4,7	9,6	5,5	4,4	13,8
	Kühlleistung*	kW	0,92	1,2	1,51	2,2	2,58	3,17
med	Sensible Kühlleistung	kW	0,88	1,03	1,16	1,83	2,02	2,65
med	Wasserdurchflussmenge	l/h	157,9	205,5	258,7	377,9	442,5	543,9
	Druckverlust	kPa	0,6	2,0	4,2	3,4	2,7	6,5
	Kühlleistung*	kW	0,73	0,89	1,06	1,63	1,85	2,35
	Sensible Kühlleistung	kW	0,7	0,73	0,78	1,37	1,44	1,87
min	Wasserdurchflussmenge	l/h	125,4	152,3	182,2	280,1	317,3	403,8
	Druckverlust	kPa	0,1	0,8	1,6	1,3	1,0	2,6

Lüfterstufe	Modell		043	049	059	068	094
	Kühlleistung*	kW	4,34	4,86	5,88	6,82	9,35
****	Sensible Kühlleistung	kW	3,32	4,2	4,72	5,48	7,54
max	Wasserdurchflussmenge	l/h	744	834,7	1008,3	1170,4	4603,9
	Druckverlust	kPa	11,3	22,8	19,3	9,8	21,2
	Kühlleistung*	kW	3,71	4,65	5,6	6,5	8,33
	Sensible Kühlleistung	kW	2,84	4,05	4,52	5,25	6,77
med	Wasserdurchflussmenge	l/h	635,7	797,8	960,7	1114,5	1442,8
	Druckverlust	kPa	5,1	4,2 4,72 5,48 834,7 1008,3 1170,4 22,8 19,3 9,8 4,65 5,6 6,5 4,05 4,52 5,25	13,9		
	Kühlleistung*	kW	2,68	4,08	4,86	5,76	6,99
	Sensible Kühlleistung	kW	1,98	3062	3,93	4,75	5,64
min	Wasserdurchflussmenge	l/h	459,4	399,2	833,9	988,8	1199,1
	Druckverlust	kPa	1,9	9,9	8,1	4,4	7,0

^{*}Kühlbetrieb: 27 °C/47 % r. F., Kaltwasser Ein/Aus: 7 °C/12 °C

3.3 Heiz-Leistungsdaten (2-Leiter, Hauptwärmetauscher)

Lüfterstufe	Modell		010	014	018	025	029	037
	Heizleistung*	kW	1,52	2,02	2,33	3,49	4,02	4,88
max	Wasserdurchflussmenge	l/h	198,4	262,9	304,4	455,7	523,4	635,6
	Druckverlust	kPa	1,9	4,4	7,9	5,1	4,1	11,8
	Heizleistung*	kW	1,34	1,67	1,92	3,05	3,48	4,13
med	Wasserdurchflussmenge	l/h	174,3	218	250,3	398,1	453,7	538,8
	Druckverlust	kPa	1,2	2,0	3,5	3,1	2,5	8,4
	Heizleistung*	kW	1,08	1,21	1,35	2,24	2,51	2,99
min	Wasserdurchflussmenge	l/h	135,6	157,6	176,4	292	326,4	389,3
	Druckverlust	kPa	0,5	0,7	1,3	1,1	0,9	2,0

Lüfterstufe	Modell		043	049	059	068	094
	Heizleistung*	kW	5,6	6,73	7,89	9,28	12,22
max	Wasserdurchflussmenge	l/h	728,9	876,8	1028,7	1209	1591,6
	Druckverlust	kPa	9,3	20,6	16,7	8,7	18,4
	Heizleistung*	kW	4,7	6,38	7,46	8,79	10,93
med	Wasserdurchflussmenge	l/h	611,9	831,7	971,8	1144	1423
	Druckverlust	kPa	4,4	14,5	11,9	6,2	12,1
	Heizleistung*	kW	3,33	5,49	6,36	7,7	8,99
min	Wasserdurchflussmenge	l/h	433,8	715,9	828,5	1002,2	1169,8
	Druckverlust	kPa	1,5	8,7	7,1	3,9	5,7

Lüfterstufe	Modell		010	014	018	025	029	037
max	Heizleistung**	kW	2,62	3,43	3,95	5,94	6,81	8,26
	Wasserdurchflussmenge	l/h	230,2	301,8	346,7	524,4	597,9	726
	Druckverlust	kPa	2,4	5,3	9,3	6,2	4,9	14,1
med	Heizleistung**	kW	2,3	2,84	3,24	5,19	5,9	7,0
	Wasserdurchflussmenge	l/h	202,3	249,9	284,9	456	518	615,2
	Druckverlust	kPa	1,5	2,5	4,2	3,8	2,9	6,5
	Heizleistung**	kW	1,79	2,05	2,28	3,8	4,24	5,05
min	Wasserdurchflussmenge	l/h	157,4	180,5	200,4	334	372,3	443,7
	Druckverlust	kPa	0,6	0,8	1,6	1,4	1,1	2,4

Lüfterstufe	Modell		043	049	059	068	094
	Heizleistung**	kW	9,46	11,43	13,37	15,75	20,71
max	Wasserdurchflussmenge	l/h	830,8	1003,8	1174,7	1382,6	1818,2
	Druckverlust	kPa	11,0	24,7	19,9	10,4	22,1
	Heizleistung**	kW	7,94	10,83	12,63	14,9	18,51
med	Wasserdurchflussmenge	l/h	696,9	951,8	1109,03	1307,9	1624,5
	Druckverlust	kPa	5,2	17,5	14,2	7,4	14,6
	Heizleistung**	kW	5,62	9,32	10,76	13,04	15,2
min	Wasserdurchflussmenge	l/h	493,4	819,1	945	1144,4	1333,6
	Druckverlust	kPa	1,8	10,6	8,5	4,7	7,0

^{*}Heizbetrieb: 20 °C, PWW Ein/Aus: 50 °C/Wassermenge wie im Kühlmodus **Heizbetrieb: 20 °C, PWW Ein/Aus: 70 °C/60 °C

3.4 Heiz-Leistungsdaten (4-Leiter, Zusatzwärmetauscher)

Lüfterstufe	Modell		010	014	018	025	029	037
max	Heizleistung*	kW	1,93	1,93	1,93	3,36	3,36	4,54
	Wasserdurchflussmenge	l/h	169,7	169,7	169,7	295,1	295,1	399
	Druckverlust	kPa	5,1	5,1	5,1	19,1	19,1	6,0
	Heizleistung*	kW	1,72	1,64	1,64	3,0	3,0	4,0
med	Wasserdurchflussmenge	l/h	151,1	155,6	155,6	263,6	263,6	375,9
	Druckverlust	kPa	3,9	3,8	3,8	14,6	14,6	4,4
	Heizleistung*	kW	1,38	1,33	1,33	2,51	2,51	3,23
min	Wasserdurchflussmenge	l/h	121,3	117,3	117,3	220,3	220,3	284,2
	Druckverlust	kPa	3,0	2,8	2,8	10,8	10,8	3,5

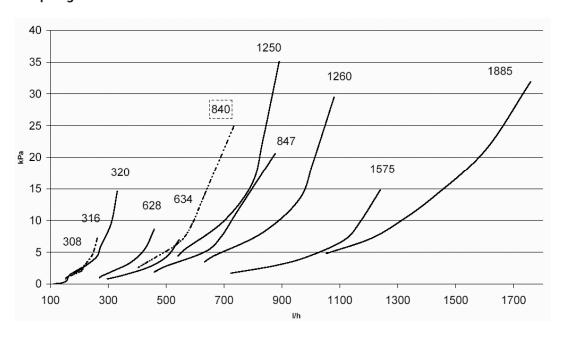
Lüfterstufe	Modell		043	049	059	068	094
	Heizleistung*	kW	4,54	5,98	5,98	7,29	8,62
max	Wasserdurchflussmenge	l/h	399	525,6	525,6	640,4	758,1
	Druckverlust	kPa	6,0	9,7	9,7	16,6	33,5
	Heizleistung*	kW	4,0	5,72	5,72	6,97	7,41
med	Wasserdurchflussmenge	l/h	375,9	502,7	502,7	612,4	651,9
	Druckverlust	kPa	4,4	8,3	8,3	14,4	27,5
min	Heizleistung*	kW	3,23	5,2	5,2	6,46	6,88
	Wasserdurchflussmenge	l/h	284,2	457,2	457,2	568,1	605,4
	Druckverlust	kPa	3,5	6,5	6,5	11,8	20,5

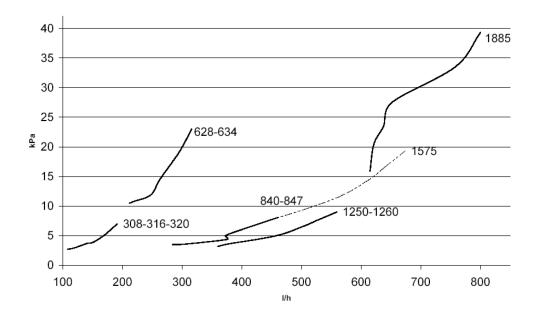
^{*}Heizbetrieb: 20 °C, PWW Ein/Aus: 70 °C/60 °C

3.5 Luftmengen bei externem statischen Druck (0-40 Pa)

Modell			0	10	20	30	40
	1		370	348	325	299	270
	max		300	277	251	222	190
010	med	m³/h	250	224	196	164	129
025-029 037-043	4	111-711	225	193	160	127	90
	min		175	126	69	-	-
	6		150	103	43	-	-
	1		330	308	284	258	229
	max		300	272	244	214	182
014 010	3	m³/h	255	228	199	168	131
014-016	med] 111-711	235	195	158	118	72
025-029	5		175	129	83	32	-
	min		156	103	35	-	-
	1		590	549	506	462	417
	max		530	485	437	390	340
025 020	med	m3/h	445	398	351	305	258
UZ 5-UZ 9	min	− m³/h ⊢	356	312	270	226	181
	5		300	242	183	120	52
	6	1 -	286	208	137	72	10
037-043	1		916	866	812	759	700
	max		730	694	653	606	553
	med	2/1-	657	607	560	514	469
	min	m³/h	585	526	473	428	382
	5	1 [435	364	303	243	188
	6	1 [390	302	232	168	270 190 129 90 229 182 131 72 417 340 258 181 52 10 700 553 469 382
	1		1249	1203	1152	1093	1027
	max		1130	1088	1042	987	923
014-018 025-029 037-043	med	no 3/la	1050	987	923	862	800
	4	− m³/h ⊢	860	803	749	694	640
	min		636	562	506	457	412
	6		594	492	434	383	270 190 129 90 229 182 131 72 417 340 258 181 52 10 700 553 469 382 188 107 1027 923 800 640 412 339 1183 1052 980 845 717 534 1646 1446 1272 1105 960
	1		1425	1369	1311	1250	1183
	max] [1310	1244	1180	1116	1052
060	med	no 3/L	1220	1165	1108	1044	980
UOO	4	m³/h	1035	993	946	898	845
	min] [822	846	806	763	717
	6		688	656	621	579	534
	1		2050	1958	1858	1754	1646
	max		1850	1753	1651	1550	1446
004	med	2,1	1600	1522	1441	1360	1272
094	4	m³/h ⊢	1400	1332	1258	1184	1105
	min	1	1250	1182	1109	1035	960
	6	1	1050	984	915	845	771

Luftmengen bei externem statischen Druck (50-100 Pa)


Modell			50	60	70	80	90	100
	1		236	196	136	-	-	-
	max] [151	101	-	-	-	-
010	med	3,1	87	32	-	-	-	-
	4	m³/h	45	-	-	-	-	-
	min] [-	-	-	-	-	-
	6] [-	-	-	-	-	-
	1		195	158	111	53	-	-
014-018	max	1	146	104	-	-	-	-
	3	7	86	29	-	-	-	-
	med	m³/h	-	-	-	-	-	-
	5		-	-	-	-	-	-
	min		-	-	-	-	-	-
	1		369	321	266	208	143	-
	max	1	290	239	185	128	-	-
	med		211	161	108	-	-	-
025-029	min	m³/h	134	81	-	-	-	-
	5		-	_	-	_	-	-
	6		-	_	-	-	-	-
	1		641	580	517	454	389	322
037-043	max		499	442	384	327	270	210
	med	_	424	378		283	229	169
	min	m³/h	339	293		192	128	_
	5	1	132	76		-	-	_
	6	1	51	_	- C C C C C C C C C C C C C C C C C C C	_	_	_
	1		952	871	782	689	597	507
	max	1	852	768		595	510	429
	med	1	737	673		539	469	396
049-059	4	m³/h	588	533		422	364	302
	min	1	368	324		232	180	115
	6	1	295	254		162	108	-
	1		1108	1030		851	749	641
	max	-	985	914		760	670	570
	med	-	908	832		666	575	479
068	4	m³/h	787	722		571	483	385
	min	-	665	607		472	393	308
	6	-	483	428	371	313	254	195
	1		1530	1410	1281	1145	1005	876
	max	-	1334	1222	1107	986	870	757
	med		1182	1088	988	882	773	665
094	4	m³/h	1020	930	837	736	636	529
		-				+	+	
	min	-	879	794	707	614	524	420
	6		698	618	535	460	378	243


3.6 Druckverlust der Wärmetauscher

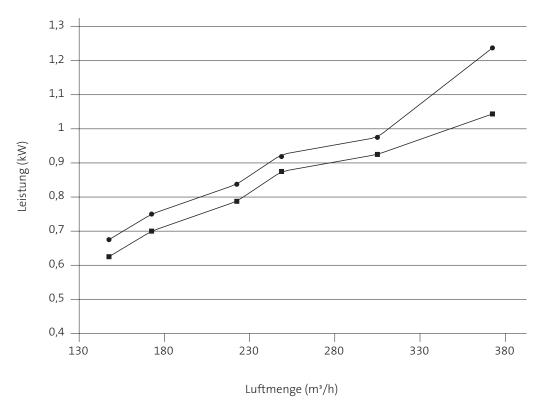
Die folgenden Grafiken geben die Druckverluste der Wärmetauscher in Abhängigkeit des Wasservolumenstroms wieder.

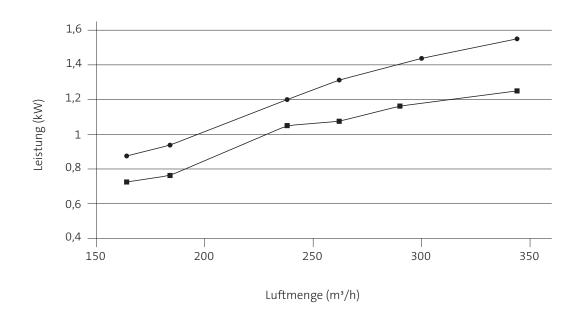
Hauptregister

Zusatzheizregister

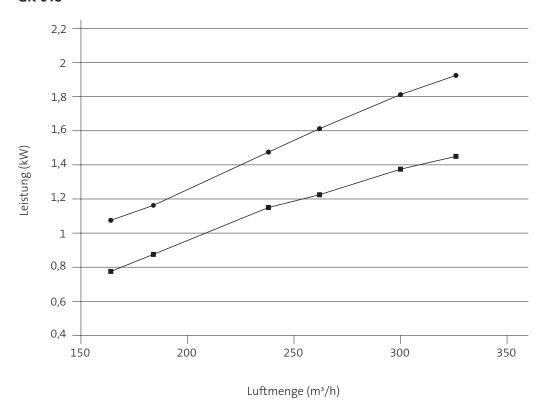
Die temperaturabhängigen Änderungen des Druckverlustes können folgender Tabelle entnommen werden.

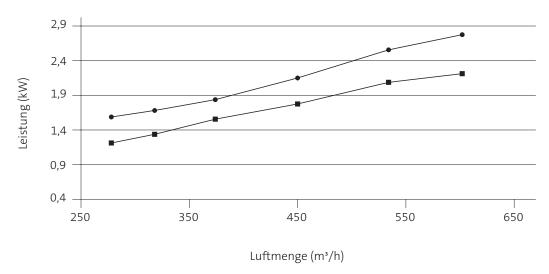
Faktor	1,1	1	0,94	0,88	0,87	0,85	0,82	0,79	0,775	0,75	0,74
°C	0	10	20	30	40	50	60	70	80	90	100

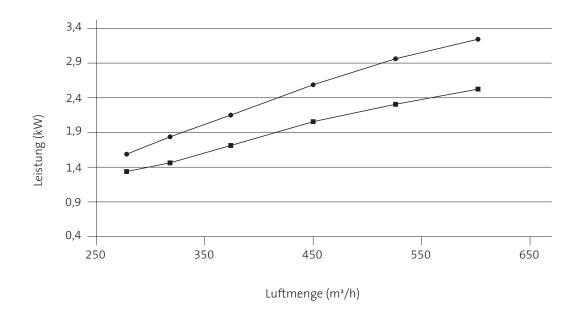


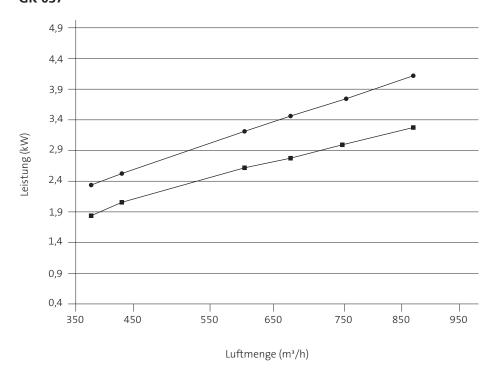

3.7 Leistungskurven

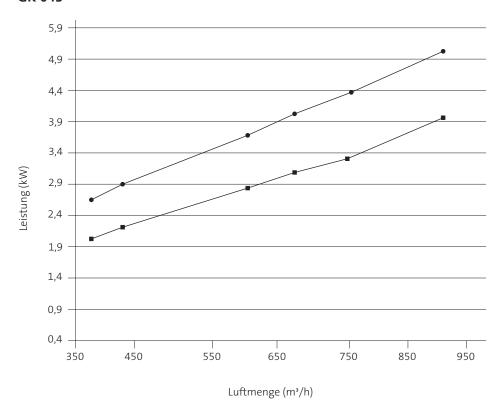
3.7.1 Leistungskurven Kühlen (Hauptregister)

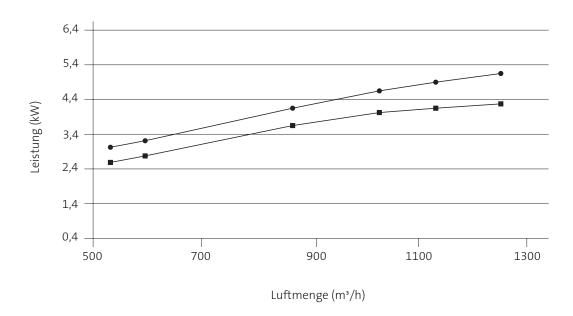

Diagramme: Luftmenge zu Leistung bei Raumtemperatur 27 °C/47 % r.F. und Wassertemperaturen 7 °C/12 °C

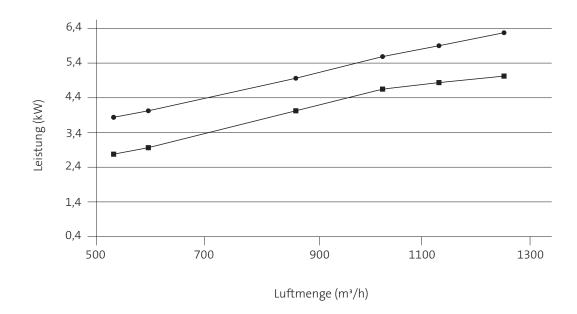

GK 010

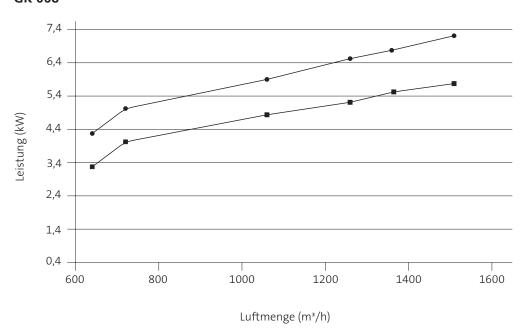


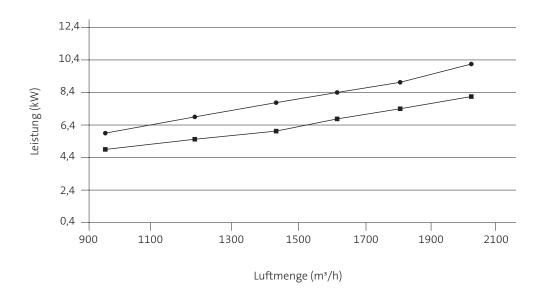

GK 018



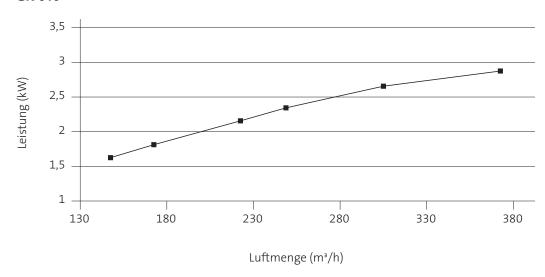

GK 029

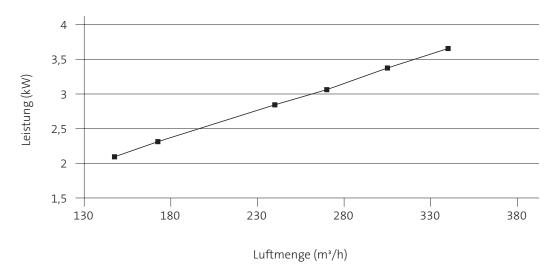



GK 043

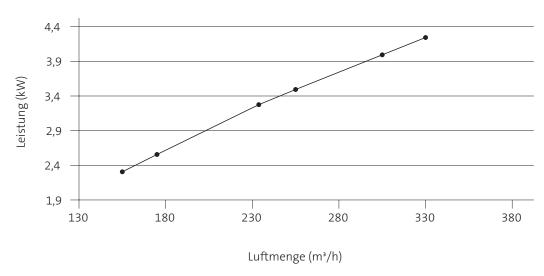


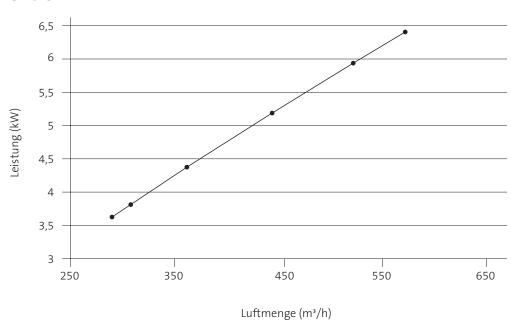
GK 059

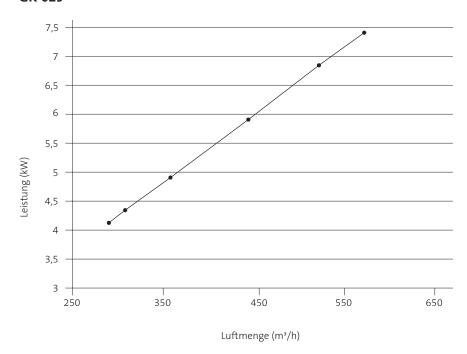


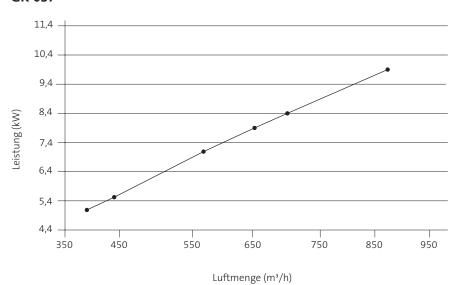


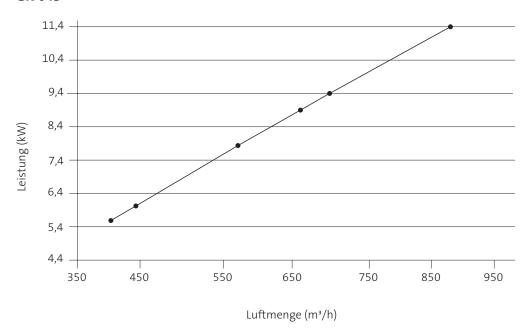
3.7.2 Leistungskurven Heizen (Hauptregister)

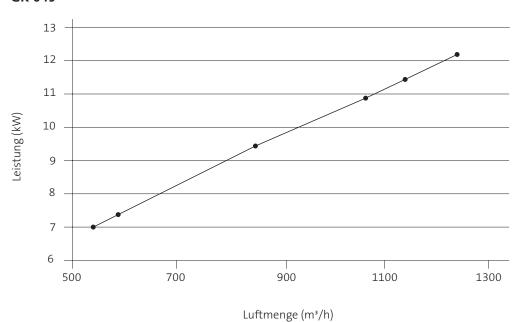

Diagramme: Luftmenge zu Leistung bei Raumtemperatur 20 °C/47 % r.F. und Wassertemperaturen 70 °C/60 °C

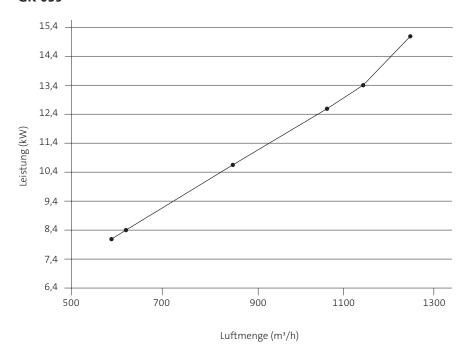

GK 010

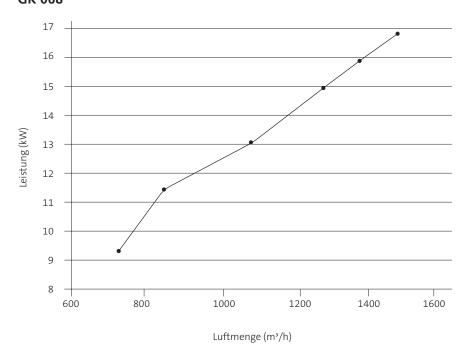


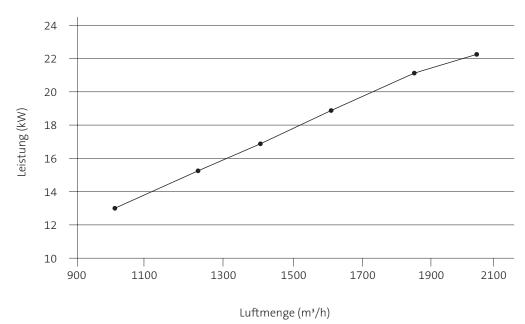

GK 018



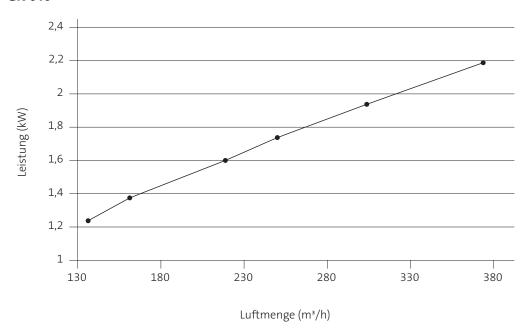

GK 029




GK 043



GK 059



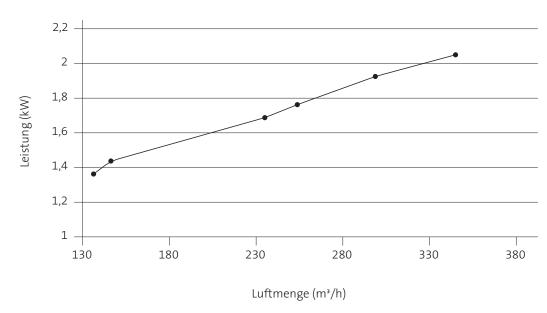
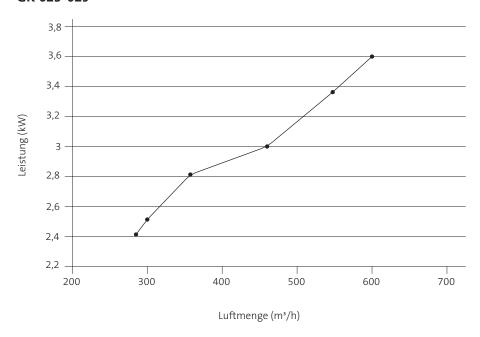
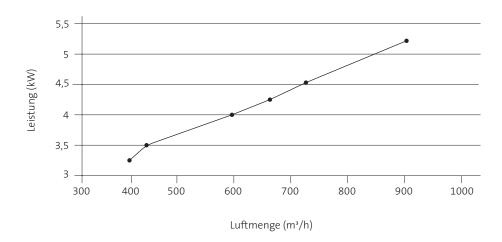

3.7.3 Leistungskurven Kühlen (Zusatzheizregister)

Diagramme: Luftmenge zu Leistung bei Raumtemperatur 20 °C/47 % r.F. und Wassertemperaturen 70 °C/60 °C

GK 010

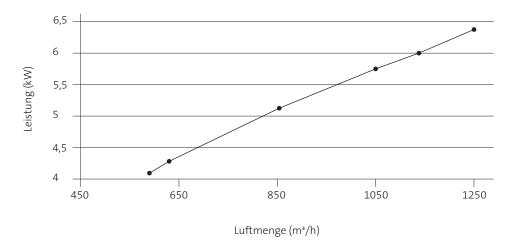


GK 014-018

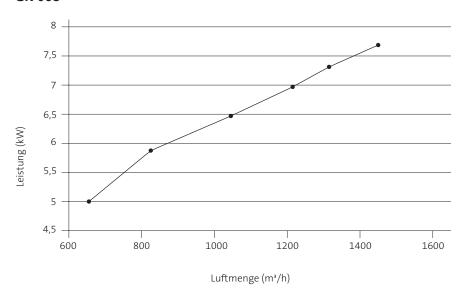


Swegon'

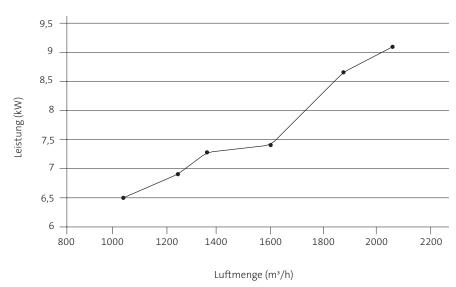
GK 025-029



GK 037-043



Swegon'


GK 049-059

GK 068

GK 094

3.8 Wasserinhalt der Wärmetauscher

Modell		010	014	018	025	029	037	043	049	059	068	094
Hauptwärmetauscher pro Rohrreihe	1	0,14	0,256	0,256	0,397	0,397	0,54	0,54	0,54	0,54	0,683	0,82
Hauptwärmetauscher gesamt	1	0,28	0,768	1,024	1,191	1,588	1,62	2,16	1,62	2,16	2,732	3,28
Zusatzwärmetauscher	ı	0,256	0,256	0,256	0,397	0,397	0,54	0,54	0,54	0,54	0,683	0,82
Rohrreihen		2	3	4	3	4	3	4	3	4	4	4

3.9 Elektrische Daten

3.9.1 Elektrische Daten (AC)

Modell		010	014	018	025	029	037	043	049	059	068	094
Leistungsaufnahme*	W	28	28	32	43	44	87	95	136	136	147	184
Stromaufnahme	А	0,12	0,12	0,15	0,19	0,19	0,38	0,42	0,6	0,6	0,68	0,82
Umdrehungen/Minute		597	621	726	621	671	742	747	1049	1102	1170	1163

^{*}bei großer Lüfterstufe

3.9.2 Elektrische Daten (EC)

Modell		010	014	018	025	029	037	043	049	059	068	094
Leistungsaufnahme max.	W	14	14	14	27	27	45	45	80	80	120	117
Leistungsaufnahme min.**	W	8	8	8	9	9	9,5	9,5	10	10	16	15
Stromaufnahme	А	0,14	0,14	0,14	0,12	0,12	0,2	0,2	0,35	0,35	0,55	0,53

^{*}bei max. Ventilatorstufe (Standardbedingungen)
**bei 2V Ansteuerung

3.10 Schalldaten

3.10.1 Schallleistungsdaten (Frequenzband) Standardgerät 2-Leiter (Baugröße 010-037)

5 "0		Schallleistungspegel*										
Größe	Lüfterstufe	125	250	500	1000	2000	4000	8000	total dB (A)			
	1	37,6	41,6	42,7	36,9	32,5	23,6	14,7	47,0			
	max	34,3	38,2	38,4	32,0	26,2	16,6	11,3	43,0			
010	med	32,6	35,0	34,5	27,8	20,8	11,5	11,4	39,0			
010	4	30,3	32,6	31,1	22,9	15,4	9,6	8,9	36,0			
	min	28,5	28,4	24,4	9,1	7,1	7,2	10,2	29,0			
	6	28,1	25,5	21,4	5,4	6,1	8,1	9,1	27,0			
	1	37,0	41,9	42,0	37,6	34,2	23,3	14,7	47,0			
	max	34,5	38,5	37,6	32,6	25,5	17,3	12,2	43,0			
044	3	31,4	35,6	34,5	29,4	20,4	14,3	12,2	40,0			
014	med	29,5	32,6	30,5	24,4	15,3	15,3	10,2	37,0			
	5	25,4	28,5	24,4	11,2	11,3	13,3	10,2	31,0			
	min	24,3	25,4	20,3	1,1	9,2	13,3	10,2	29,0			
	1	39,6	45,6	45,6	42,6	37,6	29,5	18,3	51,0			
	max	35,6	41,7	42,6	37,7	31,6	22,3	13,3	47,0			
040	3	33,4	38,6	38,5	33,5	26,4	15,3	11,2	43,0			
018	med	31,4	36,5	34,6	29,5	20,3	9,3	9,2	41,0			
	5	28,5	30,5	27,5	19,3	9,2	5,2	11,2	33,0			
	min	28,5	29,4	24,5	16,3	6,1	5,2	14,3	31,0			
	1	39,6	44,6	45,7	39,6	36,5	25,4	16,3	50,0			
	max	36,5	41,6	42,6	35,5	30,5	19,4	13,2	46,0			
025	med	33,5	37,7	38,6	31,5	25,5	15,3	12,3	43,0			
025	4	32,5	35,5	35,5	28,4	21,4	14,2	13,2	40,0			
	min	29,5	32,4	28,4	19,3	17,2	13,3	13,3	32,0			
	6	29,5	29,4	25,4	15,3	17,2	13,3	12,2	31,0			
	1	39,5	43,7	45,7	39,6	36,5	25,4	16,2	50,0			
	max	36,6	40,7	41,7	36,5	30,5	18,3	14,3	47,0			
029	med	33,6	38,5	38,6	33,5	26,4	14,2	12,3	44,0			
029	4	32,5	36,5	35,6	29,5	21,3	9,2	12,2	41,0			
	min	29,5	32,5	29,4	20,4	12,2	6,2	12,2	35,0			
	6	28,5	31,5	26,4	18,2	10,3	7,2	13,2	33,0			
	1	43,7	49,7	49,8	44,6	46,7	34,5	22,4	56,0			
	max	39,6	45,7	47,6	40,6	39,7	27,5	15,3	51,0			
027	3	36,6	42,6	42,6	37,6	32,5	20,4	12,2	48,0			
037	med	33,5	39,6	38,6	35,5	26,4	14,3	9,3	44,0			
	5	27,5	34,5	30,6	28,4	15,2	7,2	13,2	37,0			
	min	26,4	33,5	28,4	22,4	10,3	4,2	10,2	34,0			

 $[\]hbox{*Gemessen im Hohlraum bei 0 Pa statischem Druck am Ausblas in h\"{o}chster Stufe}.$

Schallleistungsdaten (Frequenzband) Standardgerät 2-Leiter (Baugröße 043-094)

G. " 0 -	1.764	Schallleistungspegel*										
Größe	Lüfterstufe	125	250	500	1000	2000	4000	8000	total dB (A)			
	1	43,7	49,7	49,8	44,7	43,7	34,5	21,4	55,0			
	max	39,7	45,7	46,8	40,6	37,6	26,4	15,3	51,0			
0.42	3	36,6	42,6	42,6	37,6	31,5	20,3	13,3	48,0			
043	med	34,5	39,6	38,5	35,5	25,5	15,3	11,3	45,0			
	5	29,5	34,6	31,4	28,4	17,3	11,3	12,2	37,0			
	min	28,5	35,5	28,4	22,4	16,3	11,3	11,2	34,0			
	1	51,8	56,9	56,8	53,8	51,8	48,7	39,5	64,0			
	max	48,7	53,8	53,8	50,7	49,7	43,6	33,5	61,0			
0.40	med	45,7	50,8	50,7	46,7	47,7	38,5	26,5	58,0			
049	min	42,6	47,7	48,7	42,7	44,7	32,5	20,4	55,0			
	5	36,5	41,6	40,6	36,5	32,5	19,4	13,2	47,0			
	6	34,5	39,6	37,6	33,5	26,5	14,3	11,2	44,0			
	1	51,7	56,8	56,9	53,7	51,7	46,6	36,6	63,0			
	max	48,8	54,7	54,7	50,7	49,7	42,6	31,5	61,0			
059	med	45,7	51,7	51,8	46,8	46,7	37,5	25,5	58,0			
059	min	42,6	48,7	49,8	43,6	43,6	32,6	20,3	54,0			
	5	36,5	42,6	42,6	37,5	32,4	21,4	14,3	48,0			
	6	34,5	39,7	38,7	35,5	27,5	18,3	12,3	45,0			
	1	53,7	58,9	59,9	55,9	54,8	49,8	41,6	66,0			
	max	51,8	57,8	57,9	54,7	53,7	47,7	38,6	64,0			
068	med	48,7	54,8	55,8	50,8	50,8	43,7	33,6	62,0			
008	min	44,7	51,7	51,8	47,6	47,7	38,6	27,5	59,0			
	5	41,6	47,6	49,7	42,7	42,6	31,6	21,3	54,0			
	6	36,6	43,6	45,6	38,6	35,6	24,5	15,3	49,0			
	1	53,9	59,8	59,8	57,8	54,8	53,8	42,6	66,0			
	max	52,8	57,9	57,8	54,9	52,8	49,7	39,6	63,0			
094	3	49,8	54,8	54,9	51,8	50,7	43,7	33,6	60,0			
U3 4	med	46,8	51,8	51,8	47,8	47,7	38,5	28,4	58,0			
	min	43,7	48,7	49,8	43,7	44,7	32,5	22,4	53,0			
	6	39,7	44,7	45,8	39,7	40,6	26,4	20,3	51,0			

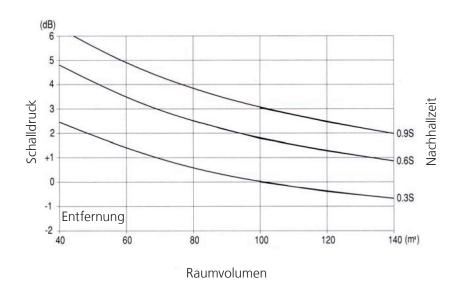
^{*}Gemessen im Hohlraum bei -0 Pa statischem Druck am Ausblas in höchster Stufe.

3.10.2 Schalldruckdaten (Frequenzband) Standardgerät 2-Leiter (Baugröße 010-037)

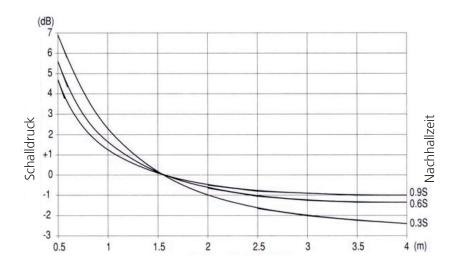
- "0		Schalldruckpegel*										
Größe	Lüfterstufe	125	250	500	1000	2000	4000	8000	total dB (A)			
	1	29,2	33,2	34,3	28,5	24,1	15,2	6,3	38,6			
	max	25,9	29,8	30,0	23,6	17,8	8,2	2,9	34,6			
040	med	24,2	26,6	26,1	19,4	12,4	3,1	3,0	30,6			
010	4	21,9	24,2	22,7	14,5	7,0	1,2	0,5	27,6			
	min	20,1	20,0	16,0	0,7	-1,3	-1,2	1,8	20,6			
	6	19,7	17,1	13,0	3,0	2,3	0,3	0,7	18,6			
	1	28,6	33,5	33,6	29,2	25,8	14,9	6,3	38,6			
	max	26,1	30,1	29,2	24,2	17,1	8,9	3,8	34,6			
044	3	23,0	27,2	26,1	21,0	12,0	5,9	3,8	31,6			
014	med	21,1	24,2	22,1	16,0	6,9	6,9	1,8	28,6			
	5	17,0	20,1	16,0	2,8	2,9	4,9	1,8	22,6			
	min	15,9	17,0	11,9	-7,3	0,8	4,9	1,8	20,6			
	1	31,2	37,2	37,2	34,2	29,2	21,1	9,9	42,6			
	max	27,2	33,3	34,2	29,3	23,2	13,9	4,9	38,6			
0.4.0	3	25,0	30,2	30,1	25,1	18,0	6,9	2,8	34,6			
018	med	23,0	28,1	26,2	21,1	11,9	0,9	0,8	32,6			
	5	20,1	22,1	19,1	10,9	0,8	-3,2	2,8	24,6			
	min	20,1	21,0	16,1	7,9	2,3	-3,2	5,9	22,6			
	1	31,2	36,2	37,3	31,2	28,1	17,0	7,9	41,6			
	max	28,1	33,2	34,2	27,1	22,1	11,0	4,8	37,6			
	med	25,1	29,3	30,2	23,1	17,1	6,9	3,9	34,6			
025	4	24,1	27,1	27,1	20,0	13,0	5,8	4,8	31,6			
	min	21,1	24,0	20,0	10,9	8,8	4,9	4,9	23,6			
	6	21,1	21,0	17,0	6,9	8,8	4,9	3,8	22,6			
	1	31,1	35,3	37,3	31,2	28,1	17,0	7,8	41,6			
	max	28,2	32,3	33,3	28,1	22,1	9,9	5,9	38,6			
020	med	25,2	30,1	30,2	25,1	18,0	5,8	3,9	35,6			
029	4	24,1	28,1	27,2	21,1	12,9	0,8	3,8	32,6			
	min	21,1	24,1	21,0	12,0	3,8	-2,2	3,8	26,6			
	6	20,1	23,1	18,0	9,8	1,9	-1,2	4,8	24,6			
	1	35,3	41,3	41,4	36,2	38,3	26,1	14,0	47,6			
	max	31,2	37,3	39,2	32,2	31,3	19,1	6,9	42,6			
027	3	28,2	34,2	34,2	29,2	24,1	12,0	3,8	39,6			
037	med	25,1	31,2	30,2	27,1	18,0	5,9	0,9	35,6			
	5	19,1	26,1	22,2	20,0	6,8	1,2	4,8	28,6			
	min	18,0	25,1	20,0	14,0	1,9	-4,2	1,8	25,6			

 $[*]Be rechnet auf Grund des Schallleistungspegels, 100 \ m^3 \ Raum, eine \ reflektierende \ Wand, 0,3 \ s \ Nachhallzeit in 1,5 \ m \ Entfernung.$

Schalldruckdaten (Frequenzband) Standardgerät 2-Leiter (Baugröße 043-094)


G . " O .	1.""	Schalldruckpegel*											
Größe	Lüfterstufe	125	250	500	1000	2000	4000	8000	total dB (A)				
	1	53,3	41,3	41,4	36,3	35,3	26,1	13,0	46,6				
	max	31,3	37,3	38,4	32,2	29,2	18,0	6,9	42,6				
0.43	3	28,2	34,2	34,2	29,2	23,1	11,9	4,9	39,6				
043	med	26,1	31,2	30,1	27,1	17,1	6,9	2,9	36,6				
	5	21,1	26,2	23,0	20,0	8,9	2,9	3,8	28,6				
	min	20,1	27,1	20,0	14,0	7,9	2,9	2,8	25,6				
	1	43,4	48,5	48,4	45,4	43,4	40,3	31,1	55,6				
	max	40,3	45,4	45,4	42,3	41,3	35,2	25,1	52,6				
0.40	med	37,3	42,4	42,3	38,3	39,3	30,1	18,1	49,6				
049	min	34,2	39,3	40,3	34,3	36,3	24,1	12,0	46,6				
	5	28,1	33,2	32,2	28,1	24,1	11,0	4,8	38,6				
	6	26,1	31,2	29,2	25,1	18,1	5,9	2,8	35,6				
	1	43,3	48,4	48,5	45,3	43,3	38,2	28,2	54,6				
	max	40,4	46,3	46,3	42,3	41,3	34,2	23,1	52,6				
0.50	med	37,3	43,3	43,4	38,4	38,3	29,1	17,1	49,6				
059	min	34,2	40,3	41,4	35,2	35,2	24,2	11,9	45,6				
	5	28,1	34,2	34,2	29,1	24,0	13,0	5,9	39,6				
	6	26,1	31,3	30,3	27,1	19,1	9,9	3,9	36,6				
	1	45,3	50,3	51,5	47,5	46,4	41,4	33,2	57,6				
	max	43,4	49,4	49,5	46,3	45,3	39,3	30,2	55,6				
0.00	med	40,3	46,4	47,4	42,4	42,4	35,3	25,2	53,6				
068	min	36,3	43,3	43,4	39,2	39,3	30,2	19,1	50,6				
	5	33,2	39,2	41,3	34,3	34,2	23,2	12,9	45,6				
	6	28,2	35,2	37,2	30,2	27,2	16,1	6,9	40,6				
	1	45,5	51,4	51,4	49,4	46,4	45,4	34,2	57,6				
	max	44,4	49,5	49,4	46,5	44,4	41,3	31,2	54,6				
004	3	41,4	46,4	46,5	43,4	42,3	35,3	25,2	51,6				
094	med	38,4	43,4	43,4	39,4	39,3	30,1	20,0	49,6				
	min	35,3	40,3	41,4	35,3	36,3	24,1	14,0	44,6				
	6	31,3	36,3	37,4	31,3	32,2	18,0	11,9	42,6				

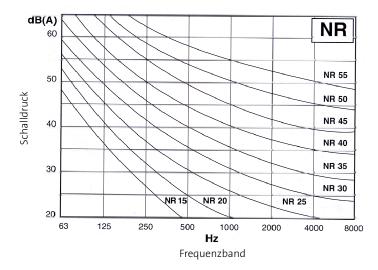
^{*}Berechnet auf Grund des Schallleistungspegels, 100 m³ Raum, eine reflektierende Wand, 0,3 s Nachhallzeit in 1,5 m Entfernung.


3.10.3 Änderung Schalldruckpegel in Bezug auf Raumvolumen und Nachhallzeit

Aus folgender Grafik kann die Veränderung des Schalldruckpegels in Abhängigkeit von Raumvolumen und/oder Nachhallzeit entnommen werden.

3.10.4 Änderung Schalldruckpegel in Bezug auf Entfernung und Nachhallzeit

Aus folgender Grafik kann die Veränderung des Schalldruckpegels in Abhängigkeit von Entfernung und/oder Nachhallzeit entnommen werden.



Entfernung

3.10.5 Geräuschpegel NR

Größe		010	014	018	025	029	037	043	049	059	068	094
	1	30	30	33	34	35	39	39	44	45	50	50
	2	27	27	29	29	29	33	33	42	42	45	47
ND	3	20	15	20	24	24	25	25	40	40	43	45
NR	4	15	15	20	20	21	25	25	37	36	40	40
	5	10	9	9	12	14	14	14	37	37	40	37
	6	8	9	9	10	12	14	14	25	25	30	33

4. Korrekturfaktoren

4.1. Korrekturfaktoren für Höhenunterschiede

Höhe	Qo	Qs
300 m	0,99	0,958
600 m	0,98	0,930
900 m	0,969	0,90
1200 m	0,959	0,859
1500 m	0,939	0,829
1800 m	0,919	0,8

Beispiel Kälteleitung:

Effektive Kälteleitung =Kälteleistung x Faktor Höhe x Faktor Glykol

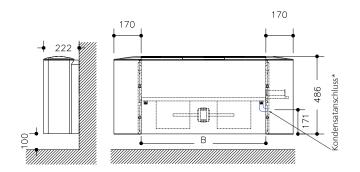
Effektive Kälteleitung =3.800 W x 0,969 x 0,856 Effektive Kälteleitung =3.152 W (bei 900 m und 30 % Ethylenglykol)

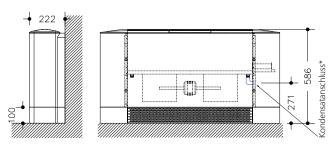
Beispiel Druckverlust:

Effektiver Druckverlust = Druckverlust x Faktor Druckverlust Effektiver Druckverlust = 27 kPa x 1,206 Effektiver Druckverlust = 32,6 kPa (bei 30 % Ethylenglykol)

4.2 Korrekturfaktoren für Glykol

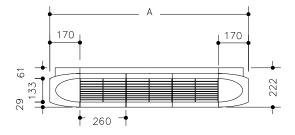
Gefrierpunkt	% Volumen	Ethylenglykol							
°C	% volumen	Qo	Vw	DR					
-5	12	0,985	1,02	1,07					
-10	20	0,98	1,04	1,11					
-15	28	0,974	1,075	1,18					
-20	35	0,97	1,11	1,22					
-25	40	0,965	1,14	1,24					




5. Abmessungen und Anschlüsse

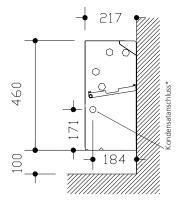
5.1 Abmessungen des Gerätes

Modell		Α	В	C	L
010	mm	860	518	746	485
014	mm	860	518	746	485
018	mm	860	518	746	485
025	mm	1120	778	1006	485
029	mm	1120	778	1006	745
037	mm	1380	1038	1266	745
043	mm	1380	1038	1266	1205
049	mm	1380	1038	1266	1205
059	mm	1380	1038	1266	1205
068	mm	1640	1298	1526	1265
094	mm	1900	1558	1786	1525

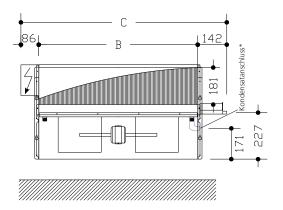

5.1.1 Ausführung VA, VB und HA, HB

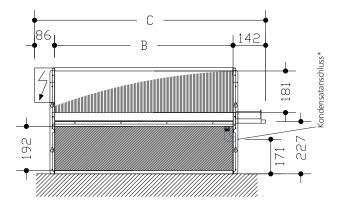
Ausführung **VA** von der Seite/von vorne Ausführung **HA** von der Seite/von unten

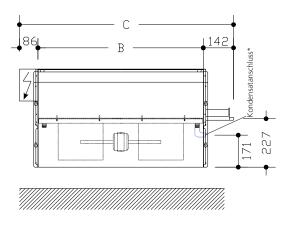
Ausführung **VB** von der Seite/von vorne Ausführung **HB** von der Seite/von unten

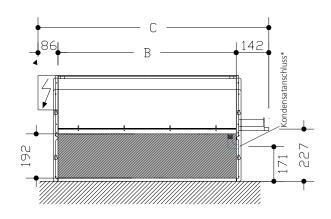


Ausführung **VA**, **VB** von oben (Luftausblas) Ausführung **HA**, **HB** von vorne (Luftausblas)


^{*} Kondensatanschluss vertikales Gerät 16 mm und horizontales Gerät 20 mm

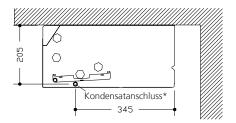

5.1.2 Ausführung VC, VD, VE, VF


Alle V* von der Seite

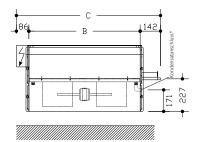

Ausführung VD von vorne

Ausführung VF von vorne

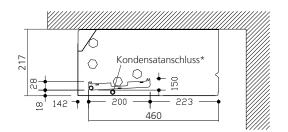
Ausführung **VC** von vorne



Ausführung **VE** von vorne


^{*} Kondensatanschluss vertikales Gerät 16 mm und horizontales Gerät 20 mm

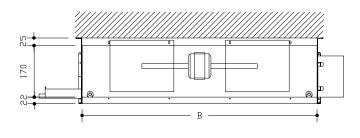
Swegon'

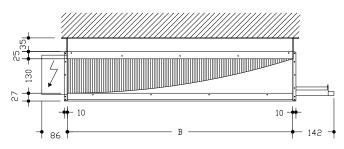

5.1.3 Ausführung HC, HD



Ausführung HC, HD von der Seite

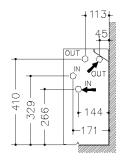
Ausführung **HC** von unten


Ausführung HD von unten


Hinweis!

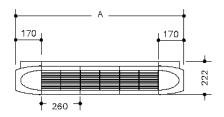
Bei optional eingebauter Kondensatpumpe wird unterhalb der Einheit nochmals 20 mm Platz benötigt!

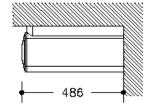
5.1.4 Abmessungen Ansaug/Ausblas

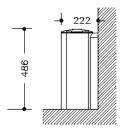


Ansaug bei VC, VE, HC

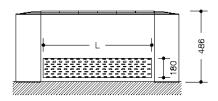
Ausblas bei VC, VD, HC, HD

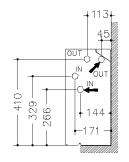

5.1.5 Abmessungen/Position der Anschlüsse




^{*} Kondensatanschluss vertikales Gerät 16 mm und horizontales Gerät 20 mm

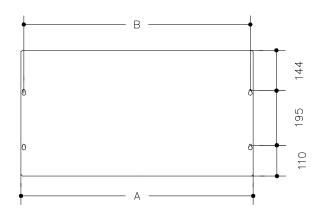
5.1.6 Ausführung VL, HL





Ausführung **VL** von oben (Luftausblas) Ausführung **HL** von der Seite Ausführung **HL** von vorne (Luftausblas)

Ausführung VL von der Seite

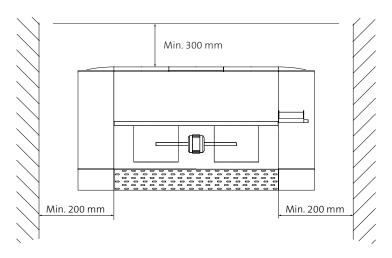


Ausführung **VL** von vorne (Luftansaug) Ausführung **HL** von unten (Luftansaug)

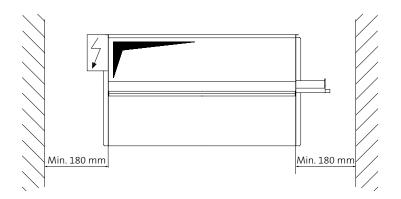
Abmessungen und Position der Wasseranschlüsse (Beispiel DX)

Modell		010-018	025-029	037-059	068	094
Α	mm	860	1120	1380	1640	1900
L	mm	485	745	1205	1265	1525

5.2 Abmessungen für die Montage



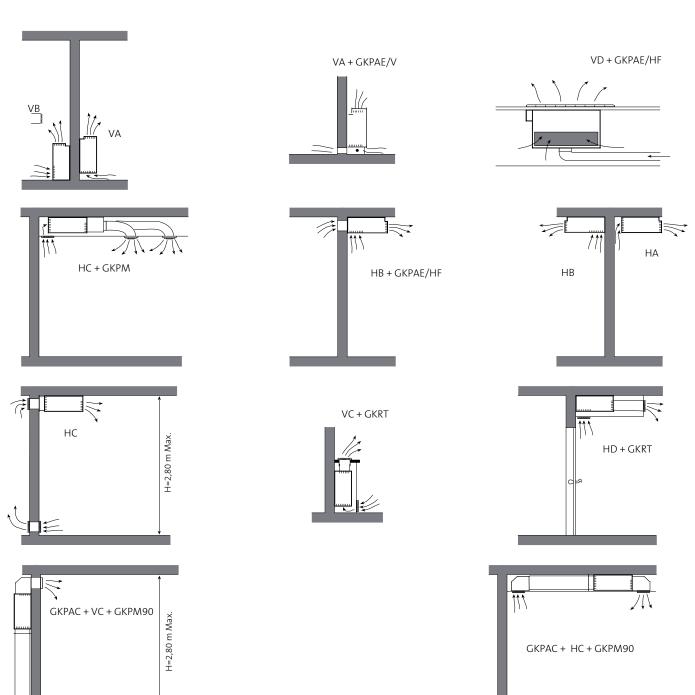
Modell		010-018	025-029	037-059	068	094
Α	mm	558	818	1078	1338	1598
В	mm	538	798	1058	1318	1578



5.3 Mindestabstände

5.3.1 Modelle mit Gehäuse

5.3.2 Modelle zum Einbauen



5.4 Gewichte

Modell		010	014	018	025	029	037	043	049	059	068	094
HA	Kg	16	17	18	22	23	27,5	29	27,5	29	35	35
НВ	Kg	16	17	18	22	23	27,5	29	27,5	29	35	35
HC	Kg	14	15	16	19	20	23	24	23	24	29	29
HD	Kg	14	15	16	19	20	23	24	23	24	29	29
HL	Kg	15	17	18	22	23	27	29	27	29	35	38
VA	Kg	16	17	18	22	23	27,5	29	27,5	29	35	35
VB	Kg	16	17	18	22	23	27,5	29	27,5	29	35	35
VC	Kg	14	15	16	19	20	23	24	23	24	29	29
VD	Kg	14	15	16	19	20	23	24	23	24	29	29
VE	Kg	14	15	16	19	20	23	24	23	24	29	29
VF	Kg	14	15	16	19	20	23	24	23	24	29	29
VL	Kg	15	17	18	22	23	27	29	27	29	35	38

5.5 Installationsbeispiele

6. Zubehör

6.1 Elektrisches Zubehör

Die Geräte der Serie GK sind serienmäßig auf Klemmen verdrahtet.

Die Klemmleiste befindet sich in einem Elektrokasten.

6.1.1 TCO-Regler

Die Raumthermostate der Serie TCO können mit allen Konvektoren kombiniert werden, welche für die Ansteuerung mit 230 V geeignet sind.

Funktionen

Ausstattung/Typ	TCO A	тсо в	тсо с	TCO D	TCO E
2-Leiter	•	•	•	•	•
4-Leiter	•1)	•2)	•2)	•2)	•2)
Manuelle Lüfterstufen	•	•	•	•	•
Manuelle und automatische Lüfterstufen			•	•	•
Manueller Saisonwechsel	•	•	•	•	•
Automatischer Saisonwechsel		•2)	•2)	•2)	•2)
Fensterkontakt/ext. Freigabe			•2)	•2)	•2)
Aufputz (AP)	•	•	•3)	•3)	•2)
Unterputz (UP)			•	•	•
Optionaler ext. Wasser-/Lufttemperaturfühler		•2)	•2)	•2)	•2)
Display		•	•	•	•
Touchscreen					•
Timer (5+2)				•	•
ModBus				•	•
Lüfternachlauf	•	•	•2)	•2)	•2)
Spannung		1	230 V; 50 Hz		'

Zubehör	TCO A	тсо в	тсо с	TCO D	TCO E
IR-Fernbedienung (TCO-IR)			•	•	•
Box zur Aufputzmontage (TCO-BOX)			•	•	•

¹⁾ Über DIP-Schalter auswählbar

Über Parameter einstellbar
 Mit optionaler Box zur Aufputzmontage

6.1.2 GKMS Relaismodul für Zonenregelung

Mit dem Relaismodul für Zonenregelung können mehrere Geräte über einen Raumthermostaten (z.B. TCO) angesteuert werden.

Durch das Relaismodul schaltet der ext. Raumthermostat lediglich das/die Ventil(e) direkt, den Lüfter über die Relais. Durch dieses Zubehör benötigt das Gerät separate Spannungsversorgung.

6.1.3 GKAS Betriebs- und Störmeldemodul

Das AS-Betriebs- und Störmeldemodul dient der Überwachung der Stromaufnahme des Lüfters. Über auf der Platine einzustellende Potis wird eine mindestens notwendige Stromaufnahme als unterer Grenzwert gegeben.

Wird eine Lüfterstufe angesteuert, aber keine sich über dem Grenzwert befindliche Stromaufnahme gemessen, schaltet das AS auf Störung.

Für den bauseitigen Abgriff stehen ein Wechslerkontakt Betrieb, sowie ein Wechslerkontakt Störmeldung zu Verfügung.

6.1.4 GKEH + GKEHR Elektroheizregister + Relais

Ein Elektroheizregister, sowie dazu passende Relais können anstatt dem Zusatzheizregister werkseitig eingebaut werden. Das Elektroheizregister beinhaltet einen Übertemperatursicherheitsthermostaten im Standard.

Modell	010-018	025-029	037-059	068-094
Leistung	1000 W	1250 W	2000 W	3000W

6.1.5 GKPSC Kondensatpumpe

Die Geräte der Serie GK können werkseitig mit einer Kondensatpumpe ausgestattet werden. Die Kondensatpumpe besteht aus einem externen Schwimmerschalter und einer Pumpeneinheit mit Störmeldekontakt. Die auf Klemme geführte Ansteuerung der Ventile (nur bei 230 V - Antrieben) ist über diesen Störmeldekontakt geführt, womit das Ventil bei Kondensatpumpenstörung abschaltet.

Technische Daten (OM 1082)

Spannungsversorgung	230 V 50 % 60 Hz
Leistungsaufnahme	10 W
Max. Fördermenge	8 l/h
Max. Förderhöhe	6 m
Meldehöhe Alarm:	21 mm
Meldehöhe Ein:	18 mm
Meldehöhe Aus:	12 mm
Schutzklasse:	IP54
Schalldruckpegel*)	≤ 32 dB (A)

Hinweis!

Die Schallangaben sind Laborwerte und können je nach Installationsort und -art unterschiedlich stark abweichen! Die Kondensatpumpe kann im Betrieb auch lauter sein als der übrige Gebläsekonvektor!

6.1.6 GKTR24 24V-Trafo für 0-10V Stellantriebe

Das Gerät wird mit einem 230/240-Trafo ausgestattet, welche die Spannungsversorgung für die optional erhältlichen 0-10 V Ventile liefert.

Siehe auch Kapitel 6.2.8 Ventilantrieb 0-10 V auf Seite 56.

6.1.7 GKMEB Minielektrobox

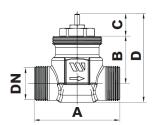
Bei 2-Leiter-Geräten ohne Zubehör kann eine platzsparende kleinere Elektrobox optional installiert werden. Hier ist ein gesonderter Schaltplan zu beachten!

6.1.8 GKZE Zugentlastung

Eine Zugentlastung für die Spannungsversorgung wird optional am Schaltkasten vorgesehen.

^{*}gemessen im Schalllabor, Pumpe mit Wasser 1 Meter im Ansaug und 5m druckseitig in 1,5 Meter Abstand

6.2 Hydraulisches Zubehör

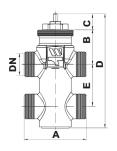

6.2.1 GKV22 2-Leiter 2-Wege-Ventil

Das eingebaute Ventilkit GKV22 besteht aus passgenauen Kupferrohrbögen und untenstehendem Ventil.

Ventilvarianten	Ausführung	Antrieb
GKV22	montiert	230 V (siehe 6.2.6)
GKV22K	lose mitgeliefertes Kit	230 V (siehe 6.2.6)
GKV22M	montiert	0-10 V (siehe 6.2.8)
GKV22MK	lose mitgeliefertes Kit	0-10 V (siehe 6.2.8)

Abmessungen in mm

	GK 010 - 043	GK 049-094
DN	1/2"	3/4"
А	52	56
В	29	28
С	13,5	13,5
D	51	56

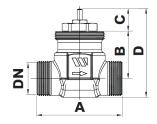

6.2.2 GKV23 2-Leiter 3-Wege-Ventil

Das eingebaute Ventilkit GKV23 besteht aus passgenauen Kupferrohrbögen und untenstehendem Ventil.

Ventilvarianten	Ausführung	Antrieb
GKV23	montiert	230 V (siehe 6.2.6)
GKV23K	lose mitgeliefertes Kit	230 V (siehe 6.2.6)
GKV23M	montiert	0-10 V (siehe 6.2.8)
GKV23MK	lose mitgeliefertes Kit	0-10 V (siehe 6.2.8)

Abmessungen in mm

	GK 010 - 043	GK 049-094
DN	1/2"	3/4"
А	52	56
В	29	28
С	13,5	13,5
D	95,5	112,5
E	35	50

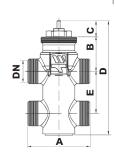

6.2.3 GKV42 4-Leiter 2-Wege-Ventil

Das eingebaute Ventilkit GKV42 besteht aus passgenauen Kupferrohrbögen und untenstehendem Ventil (2 Ventile).

Ventilvarianten	Ausführung	Antrieb
GKV42	montiert	230 V (siehe 6.2.6)
GKV42K	lose mitgeliefertes Kit	230 V (siehe 6.2.6)
GKV42M	montiert	0-10 V (siehe 6.2.8)
GKV42MK	lose mitgeliefertes Kit	0-10 V (siehe 6.2.8)

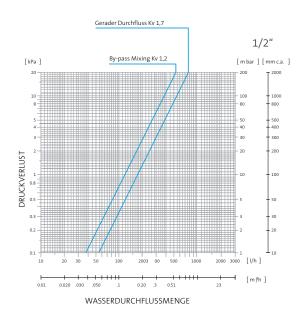
Abmessungen in mm

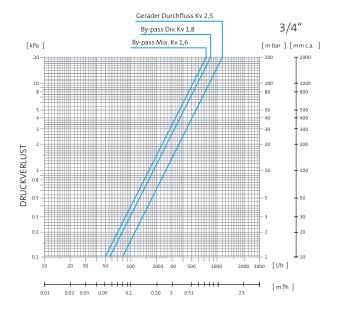
	GK 010 - 043	GK 049-094
DN	1/2"	3/4"
A	52	56
В	29	28
С	13,5	13,5
D	51	56


6.2.4 GKV43 4-Leiter 3-Wege-Ventil

Das eingebaute Ventilkit GKV43 besteht aus passgenauen Kupferrohrbögen und untenstehendem Ventil (2Ventile).

Ventilvarianten	Ausführung	Antrieb
GKV43	montiert	230 V (siehe 6.2.6)
GKV43K	lose mitgeliefertes Kit	230 V (siehe 6.2.6)
GKV43M	montiert	0-10 V (siehe 6.2.8)
GKV43MK	lose mitgeliefertes Kit	0-10 V (siehe 6.2.8)


Abmessungen in mm


	GK 010 - 043	GK 049-094
DN	1/2"	3/4"
А	52	56
В	29	28
С	13,5	13,5
D	95,5	112,5
Е	35	50

6.2.5 Druckverlustkurven Daten der Ventile GKV2* und GKV4*

	GK010-043	GK049-094
Anschluss	1/2" AG Konisch	3/4" AG Konisch
Max. Betriebsdruck	PN 10	PN 10
Max. Glykolanteil	45 %	45%

6.2.6 Ventilantrieb 230 V AUF/ZU zu GKV2* und GKV4* (22C)

Im Ventilkit ist ein Antrieb (zwei bei 4-Leiter-Ventilkits) enthalten. Der elektrothermische Antrieb in Kombination mit dem Ventil ist stromlos geschlossen. Wird der Antrieb mit 230 V angesteuert, fährt das Ventil auf.

6.2.7 Ventilantrieb 24 V AUF/ZU zu GKV2* und GKV4*

Im Ventilkit ist ein Antrieb (zwei bei 4-Leiter-Ventilkits) enthalten. Der elektrothermische Antrieb in Kombination mit dem Ventil ist stromlos geschlossen. Wird der Antrieb mit 24 V angesteuert, fährt das Ventil auf.

Tech	nische	Dater
	11136116	Dutt

Spannungsversorgung	230 V ± 10 %
Leistungsaufnahme	2,5 W
Max. Stromaufnahme	0,25 A x 0,5 Sek.
Fahrzeit	ca. 4 Min.
Reaktionszeit	ca. 90 Sek.
Hub	2,5 mm (max. 3,5 mm)
Schutzklasse	IP44, EN60529
Betriebsgrenzen	5° - 45 °C Umgebung
Max. Mediumstemp.	100 °C

Technische Daten

Spannungsversorgung	24 V ± 10 %
Leistungsaufnahme	2,5 W
Max. Stromaufnahme	0,35 A x 30 Sek.
Fahrzeit	ca. 5 Min.
Reaktionszeit	ca. 3 Min.
Hub	2,5 mm (max. 3,5 mm)
Schutzklasse	IP44, EN60529
Betriebsgrenzen	5° - 45 °C Umgebung
Max. Mediumstemp.	100 °C

6.2.8 Ventilantrieb 0-10 V zu GKV2*M und GKV4*M (EMUJC)

Im Ventilkit ist ein Antrieb (zwei bei 4-Leiter-Ventilkits) enthalten. Der elektromechanische Antrieb in Kombination mit dem Ventil ist stromlos geschlossen. Der Antrieb braucht eine Versorgungsspannung von 24 V. Über das 0-10 V Signal fährt das Ventil auf oder zu.

Technische Daten

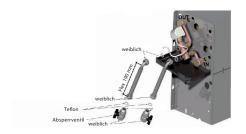
Spannungsversorgung	24 V ± 10 %
Leistungsaufnahme	2,0 - 2,7 W
Max. Stromaufnahme	0,25 A x 60 s
Fahrzeit	ca. 5 min.
Hub	2,5 mm (max. 3,5 mm)
Schutzklasse	IP40, EN60529
Betriebsgrenzen	5° - 45 °C Umgebung
Max. Mediumstemp.	95 °C

Funktion	Jumper	Beleuchtung ON*	Beleuchtung OFF	
Blocken	1	aktiviert	deaktiviert	
Fingangssignal	2	0.10.1/		
Eingangssignal	3	0-10 V	0-5 V	
-	4	-	-	
Richtung	5	Direkt	Reverse	
-	6	-	-	

^{*}Werkeinstellung

6.2.9 GKDET2 2-Leiter Anschlusskit

Das lose mitgelieferte Kit GKDET2 vereinfacht die bauseitige Verbindung von Systemleitung zu Geräteanschluss. Außerdem enthält dieses Kit 2 Absperrventile, was eine spätere Wartung oder Reparatur vereinfacht. Das gesamte Kit muss ggf. bauseitig isoliert werden.


Lieferumfang:

- 4 Dichtungen
- 2 Flexschläuche
- 2 Absperrventile

Hinweis!

Das Kit GKDET2 ist nur in Kombination mit 3-Wege-Ventilen einzusetzen.

Beispielfoto

6.2.10 GKDET4 4-Leiter Anschlusskit

Das lose mitgelieferte Kit GKDET4 vereinfacht die bauseitige Verbindung von Systemleitung zu Geräteanschluss. Außerdem enthält dieses Kit 4 Absperrventile, was eine spätere Wartung oder Reparatur vereinfacht. Das gesamte Kit muss ggf. bauseitig isoliert werden.


Lieferumfang:

- 8 Dichtungen
- 4 Flexschläuche
- 4 Absperrventile

Hinweis!

Das Kit GKDET4 ist nur in Kombination mit 3-Wege-Ventilen einzusetzen.

6.2.11 GKB1 Zusatzheizregister

Der Gebläsekonvektor kann mit einem Zusatzheizregister geliefert werden um das Gerät in einem 4-Leiter-System zu betreiben.

6.3 Luftführungs- und sonstiges Zubehör

6.3.1 GKCZ Satz Füße

Das Set "Füße" besteht aus 4 Teilen: zwei Bügel zum Tragen des Gebläsekonvektors, und zwei Plastikelemente, die dem Profil des Gehäuses folgen. Das Set "Füße" kann an Geräte der Ausführung VA und VB montiert werden, um am Boden bzw. an der Wand austretende Elektrokabel und Wasserrohre sowie den Kondensatabfluss zu verdecken. Der freie Bereich zwischen den Füßen ermöglicht nach der Entfernung des Filters den Zugang zur Belüftungseinheit des Gebläsekonvektors und seine Überprüfung.

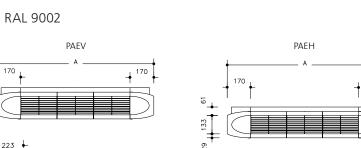
Farbe: RAL 9002

Höhe ab Boden/Wand: 100 mm

Der Sockel besteht aus zwei seitlichen, symmetrischen Füßen und einem abnehmbaren Luftansauggitter.

Farbe: RAL 9010

Höhe ab Boden: 100 mm

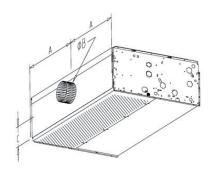


PAE/V, PAE/H - Klappen für Außenluftöffnungen. Die Klappen für die Außenluftöffnungen ermöglichen eine Regelung des in den Raum einzuführenden Frischluftvolumens.

Der Frischluftanteil kann zwischen 0 und 100 % des Luftaustritts variieren. Die Klappe wird gewöhnlich manuell eingestellt, dies kann aber auch per Motor erfolgen. Hierfür sind spezielle Stellantriebe (PAEM - siehe Seite 59) optional verfügbar.

Die Klappe kann zusammen mit dem Set "Füße" (GKCZ - siehe Kapitel 6.3.1) oder mit dem Sockel (GKCZF - siehe Kapitel 6.3.2) installiert werden.

Farbe: RAL 9002



6.3.4 GKPAEHF Frischluftansaugöffnung Rund

Kann an alle Gebläsekonvektoren GK der Ausführung VD, VL, HD, HL montiert werden. Bestehend aus einem Paneel mit einer runden Flanschöffnung zu Anbindung an die Außenluft. Diese Zusatzansaugung kann zum Einführen von Frischluft in den Raum oder für einen großzügigeren Volumenumsatz des Gebläsekonvektors dienen. Die Abstände und Abmessungen des GKPAEHF sind für jede Baugröße in der nebenstehenden Tabelle in Millimetern angegeben. Die Flanschhöhe beträgt 50 mm.

Modell	010-018	025-029	037-059	068-094
Α	259	389	519	649
В	100	100	100	100
С	100	100	100	100

6.3.5 GKPAEM Motor für Klappen

Der Motor der Außenluftklappe öffnet oder schließt die Frischluftzufuhr und kann sowohl an die vertikalen als auch an die horizontalen Modelle installiert werden. Die Einstellung des Frischluftvolumens (bzw. die Drosselung der Öffnung der Ansaugung von außen) bleibt trotz Motor manuell und erfolgt durch vorherige Einstellung des Winkelhubs des Stellantriebs. Die Vorrichtung ermöglicht daher nur die Öffnung oder Schließung der Außenluftansaugung je nach vorher eingestelltem Luftvolumen.

Drehmoment	4 Nm
Hubzeit	35 Sek.
Versorgung	230 V - 50/60 Hz AC
Verbrauch	4 W (während des Betriebs)
Einstellwinkel	3 W (am Ende des Betriebs)
Schall-Leistung	40 DB (A)
Schutzart	IP42

6.3.6 GKPPV Rückwand für vertikale Modelle

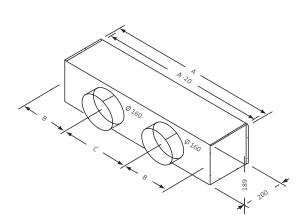
Das Paneel, in Gehäusefarbe lackiert, kann die Rückseite der Gebläsekonvektoren bedecken, falls diese gegen Glasscheiben oder mit sichtbarer Rückseite montiert werden.

Farbe: RAL 9010

6.3.7 GKPPHA/B Rückwände für horizontale Modelle

Das Paneel, in Gehäusefarbe lackiert, kann die Rückseite der horizontalen Gebläsekonvektoren bedecken, falls diese gegen Glasscheiben oder mit sichtbarer Rückseite montiert sind. Das GKPPHA ist für das Modell HA geeignet, wogegen das GKPPHB für das Modell HB ausgelegt ist.

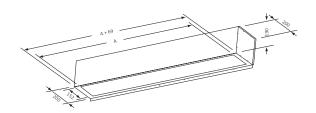
6.3.8 GKPM Ausblasplenum mit Rundanschlüssen


Über das Auslassplenum kann der Gebläsekonvektor mit runden kanalisierten Luftverteilungssystemen verbunden werden. Das Zubehör aus verzinktem Blech ist optional isoliert erhältlich (Artikel bez. COIB), um die Kondensierung der feuchten Außenluft auf den Wänden zu vermeiden, wenn es an einem Gebläsekonvektor für die Kühlung angebracht ist.

Das Plenum kann je nach Baugröße des Gebläsekonvektors 1 bis 3 Verbindungsflansche haben, die mittels Druckschrauben an der Wand und mittels selbstschneidender Schrauben (als Satz geliefert) an der Auslassöffnung des Gebläsekonvektors befestigt werden können.

Die nachfolgende Tabelle und die Zeichnung geben die verschiedenen Abmessungen in Millimetern an.

Modell	010-018	025-029	037-059	068-094
Flansch -Ø	160			
Flanschhöhe		60		
Flansch (Anzahl)	1	2	3	4
А	540	800	1060	1320
В	260	277	195	200
С	-	325	325	300

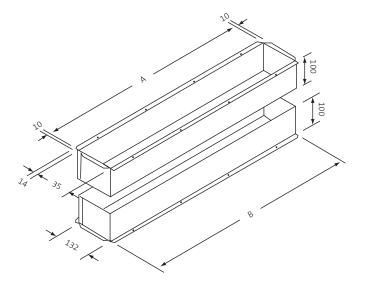

6.3.9 GKPM90 90° Ausblasplenum

Mit diesem Anschluss kann der Luftstrom um 90° umgelenkt werden, so dass der Auslass des Gebläsekonvektors frontal wird.

Hergestellt aus verzinktem Blech, wird das Zubehör optional isoliert geliefert, um Kondensatbildung zu vermeiden. Das Plenum wird mit als Satz gelieferten, selbstschneidenden Schrauben an der Auslassöffnung des Gebläsekonvektors angebracht.

Die nachfolgende Tabelle und die Zeichnung geben die verschiedenen Abmessungen in Millimetern an.

Modell	010-018	025-029	037-059	068-094
А	451	711	971	1231



6.3.10 GKRT Ausblasteleskopanschluss

Über diesen Anschluss kann der Auslass des Gebläsekonvektors mit einer Ebene verbunden werden, die sich in einem Abstand von 101 bis 191 mm befindet. Seine Wände können optional isoliert sein, damit sich die feuchte Luft nicht verflüssigt, wenn der Anschluss mit einem in Kühlung funktionierenden Gebläsekonvektor verbunden wird. Aus verzinktem Blech hergestellt, wird es unter Verwendung der vorgebohrten Löcher und der als Satz gelieferten, selbstschneidenden Schrauben an der Auslassöffnung des Geräts befestigt.

Die nachfolgende Tabelle und die Zeichnung geben die verschiedenen Abmessungen in Millimetern an.

Modell	010-018	025-029	037-059	068-094
А	521	781	1041	1301
В	517	777	1037	1297

6.3.11 GKPA Ansaugplenum mit Rundanschluss

Über dieses aus verzinktem Blech hergestellte Plenum kann der Gebläsekonvektor mit Luftansaugsystemen mit runden Kanälen verbunden werden.

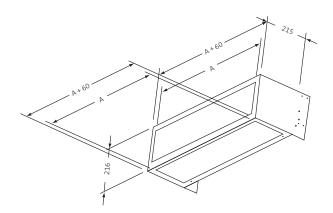
Das Plenum kann je nach Baugröße des Gebläsekonvektors 1 bis 3 Verbindungsflansche haben und wird mit selbstschneidenden Schrauben an den vorgebohrten Stellen in den Seiten des Geräts befestigt. Wie auf der Zeichnung zu bemerken ist, kann der Filter dank den Stegen im Plenum selbst auch nach der Montage des Teils entfernt werden.

Die nachfolgende Tabelle und die Zeichnung geben die verschiedenen Abmessungen in Millimetern an.

Modell	010-018	025-029	037-059	068-094
Flansch -Ø	160			
Flanschhöhe		6	0	
Flansch (Anzahl)	1	2	3	4
А	262	230	197	202
В	-	325	325	300

6.3.12 GKPAL Multifunktionsansaugplenum

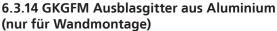
Über das Zubehör kann der Gebläsekonvektor durch einfaches Durchbrechen der Vorbohrungen mit mehreren Ansaugsystemen verbunden werden. Wenn nur die Vorbohrung an der Rückseite des Plenums durchgebrochen wird, kann der Gebläsekonvektor mit einem Ansaugkanal verbunden werden. Wenn nur die Vorbohrung an der Vorderseite des Plenums durchgebrochen wird, kann der angesaugte Luftstrom um 90° umgelenkt werden. Wenn man beide Vorbohrungen durchbricht, ist die Realisierung einer Mischkammer von Frisch- und Rückluft möglich. Die Vorrichtung ist aus verzinktem Blech hergestellt und wird an den Seiten des Gebläsekonvektors befestigt. Der Filter kann auch bei bereits befestigtem Plenum aus seinen Sitzen herausgenommen werden.


Die nachfolgende Tabelle und die Zeichnung geben die verschiedenen Abmessungen in Millimetern an.

Modell	010-018	025-029	037-059	068-094
А	464	724	984	1244

Hinweis!

Alle Auslass- und Ansaugplenen sind nur für die Einbaumodelle geeignet.



6.3.13 GKCOIB Isolierung für Ausblasplenen

Die Ausblasplenen werden serienmäßig ohne Isolierung geliefert. Mit diesem Zubehör werden die Plenen isoliert um Schwitzwasser zu vermeiden.

Dies ist besonders bei niedrigen Ausblastemperaturen notwendig!

Das Gitter aus eloxiertem Aluminium wird als Finish der Luftauslassöffnungen an Möbelelementen oder Abdeckpaneelen der Einbau-Gebläsekonvektoren geliefert. Die Lamellen sind nicht verstellbar.

Hinweis!

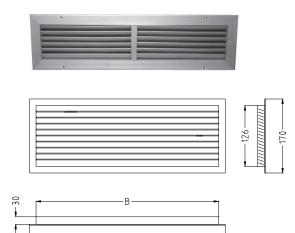
Dieses Zubehörteil ist nicht für die direkte Montage am Gebläsekonvektor bzw. an Luftführungselementen geeignet.

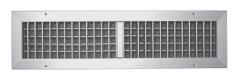
Die nachfolgende Tabelle und die Zeichnung geben die Nutzabmessungen zur korrekten Montage in Millimetern an.

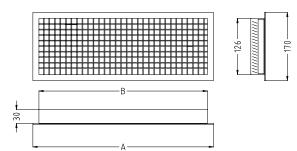
Modell	010-018	025-029	037-059	068-094
А	560	820	1080	1340
В	516	776	1036	1296

6.3.15 GKGFZ Ausblasgitter aus Aluminium (verstellbar nur für Wandmontage)

Das Gitter aus eloxiertem Aluminium wird als Finish der Luftauslassöffnungen an Möbelelementen oder Abdeckpaneelen der Einbau-Gebläsekonvektoren geliefert. Die Lamellen ermöglichen eine Ausrichtung der Luft in den Raum, da sie horizontal und vertikal verstellbar sind.




Hinweis!


Dieses Zubehörteil ist nicht für die direkte Montage am Gebläsekonvektor bzw. an Luftführungselementen geeignet.

Die nachfolgende Tabelle und die Zeichnung geben die Nutzabmessungen zur Realisierung des Sitzes in Millimetern an.

Modell	010-018	025-029	037-059	068-094
А	560	820	1080	1340
В	516	776	1036	1296

6.3.16 GKGFA Ausblasgitter aus Aluminium (nur für Wandmontage)

Das Gitter in der Ansaugung aus eloxiertem Aluminium wird als Finish der Luftöffnungen an Möbelelementen oder Abdeckpaneelen der Einbau-Gebläsekonvektoren geliefert.



Hinweis!

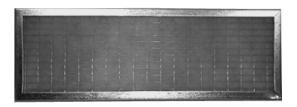
Dieses Zubehörteil ist nicht für die direkte Montage am Gebläsekonvektor bzw. an Luftführungselementen geeignet.

Die nachfolgende Tabelle und die Zeichnung geben die Nutzabmessungen zur Realisierung des Sitzes in Millimetern an.

Modell	010-018	025-029	037-059	068-094
А	560	820	1080	1340
В	516	776	1036	1296

6.3.17 GKFAG3 G3-Filter anstelle G1-Filter

Der Spezialfilter hat einen höheren Filtrationsgrad als der serienmäßige (G3 anstelle von G1). Optional sind auch Filter der Kategorien G2, G4 und G5 verwendbar, allerdings nur nachdem man Druckverlust, Geräuschpegel und Funktionsweise der speziellen Konstellation geprüft hat.


Die Abmessungen sind wie jene des mit den Gebläsekonvektoren serienmäßig gelieferten Filters auch dieser Filter kann entfernt und gereinigt werden.

Der Filter ist auf einer Seite hellblau und auf der anderen weiß. Für den korrekten Einsatz muss der Filter in den Gebläsekonvektor mit der hellblauen Filterseite nach außen gerichtet montiert sein.

Die durch diesen Filtertyp verursachten Druckverluste weichen nur minimal von den Werten des Standardfilters ab.

6.3.18 GKHDP

Die Gebläsekonvektoren der Serie GK können in horizontaler oder vertikaler Ausführung bestellt werden. Dies betrifft vor allem die interne Kondensatwanne. Ist bei Bestellung noch unklar, ob das Gerät horizontal oder vertikal installiert werden soll, kann ein vertikales Gerät mit dem Zubehör GKHDP bestellt werden. Das eigentlich vertikal zu installierende Gerät wird dann mit einer L-Kondensatwanne ausgestattet und kann horizontal, wie auch vertikal installiert werden.

7. Montage

7.1 Hinweise zur Installation

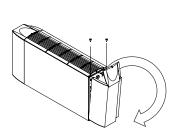
Erhalt des Gerätes

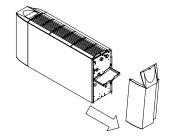
Vor dem Auspacken und der Montage des Gerätes sind folgende Prüfungen durchzuführen:

Prüfungen vor dem Auspacken

- Es ist sicherzustellen, dass die Verpackung außen trocken und unbeschädigt ist, da sich spätere Beschwerden nachteilig auf einen zukünftigen Garantie-Anspruch auswirken können.
- Es ist sicherzustellen, dass die Informationen auf dem Lieferschein mit den Angaben außen auf der Verpackung übereinstimmen (Gerätebezeichnung bzw. -modell und Seriennummer).
- Es ist sicherzustellen, dass die Kiste richtig auf einer flachen Oberfläche aufliegt, bevor das Gerät ausgepackt wird.

Auspacken


Die Verpackungsbänder werden entfernt und der Kartondeckel geöffnet. Des Weiteren sind die Blasenfolie und die Styroporteile zu entfernen. Die Deckenblende sollte zuletzt ausgepackt werden, um Beschädigungen zu vermeiden.


Nun kann der Inhalt anhand der Liste der lose mitgelieferten Teile kontrolliert werden.

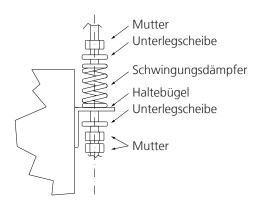
7.1.1 Geräte mit Gehäuse

Die Gebläsekonvektoren GK in den Versionen VA, VB, VL sowie HA und HB haben ein Gehäuse, welches in der Mitte aus einer fixen Metallplatte und seitlich aus Kunststoffabdeckung besteht. Diese Kunststoffabdeckungen können schnell und mit wenig Aufwand abgenommen werden, was die Installation, Wartung oder ggf. notwendige Reparatur deutlich vereinfacht. Gehen Sie zum Abnehmen der Kunstsoffabdeckung wie folg vor:

- Deckel anheben
- Fixierschraube lösen
- Kunststoffabdeckung nach oben und zur Seite wegziehen
- Kunststoffabdeckung an einem geschützten Ort aufbewahren

7.2 Anforderungen an den Installationsplatz

Die Einbauposition des Gebläsekonvektors sollte unter Berücksichtigung der folgenden Gesichtspunkte ausgewählt werden:


- Rohrleitungen und elektrische Anschlüsse sollten leicht zugänglich sein.
- Das Gerät sollte mit mindestens jeweils 1,5 Meter Abstand zu einer Wand positioniert werden.
- Das Gerät sollte nicht direkt über Hindernissen installiert werden.
- Der Kondensatablauf sollte an jeder Stelle ein ausreichendes Gefälle min. (min. 1 %) zwischen Kassette und Abfluss aufweisen. Die maximale Förderhöhe der Kondensatpumpe ist zu beachten.
- Über der abgehängten Zwischendecke muss genügend Raum sein, um den Gebläsekonvektor wie in der Abbildung dargestellt installieren zu können.
- Die Gebläsekonvektoraufhängungen müssen für die entsprechende Traglast ausgelegt sein. (Informationen zum Gewicht des Geräts finden Sie unter "Technische Angaben".)
- In der Zwischendecke sollte eine Öffnung zur Revision mit entsprechenden Abmessungen vorgesehen werden.

7.3 Installation des Gerätes

Die Geräte der Serie GK sind für die Installation an Gewindestangen vorgesehen. Die Position der notwendigen Gewindestangen finden Sie im Kapitel "Abmessungen und Anschlüsse" (Seite 46).

Die Geräte sollten entsprechend nachfolgender Zeichnung aufgehängt werden.

Mittels der Gegenmuttern kann das Gerät ausgerichtet und fixiert werden. Es ist darauf zu achten, dass die Gewindestangen maximal 30 mm über die Befestigungslaschen nach unten vorstehen.

Hinweis!

Das Gerät muss waagerecht eingebaut werden.

Achtung!

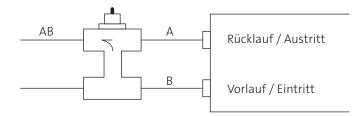
Nach Montage des Gerätes ist zu prüfen, ob das Gerät sicher hängt und auch bei im Betrieb auftretenden Vibrationen nicht herunterfallen kann.

7.4 Anschließen der Wasserversorgung

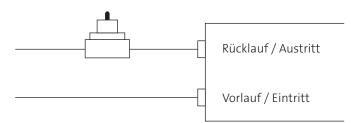
Die Wasserversorgung kann direkt auf die Geräteanschlüsse oder auf das optionale Regelventil erfolgen.

Tipp!

Für Wartungs- und Reparaturarbeiten sind Absperrventile im Vor- und Rücklauf des Gebläsekonvektors zu installieren.


Hinweis!

Nach dem Befüllen mit Wasser (Wasser/Glykolgemisch) muss das Gerät an den Entlüftungsventilen in der Nähe der Wasseranschlüsse entlüftet werden.


7.5 Montage externes Ventil

Es kann ein werksseitig montiertes Ventil mitbestellt werden. Soll ein bauseitig gestelltes Ventil montiert werden, ist der Druckverlust und die Anschlussgröße zu berücksichtigen.

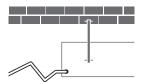
3-Wege-Ventil

2-Wege-Ventil

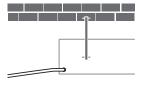
7.6 Anschluss der Kondensatleitung

7.6.1 Ohne Kondensatpumpe

An den Kondensatanschluss (Position und Abmessungen entnehmen Sie bitte dem Kapitel "Abmessungen" auf Seite 40) muss eine entprechend dimensionierte Freispiegelleitung angeschlossen werden.


Die angeschlossene Kondensatleitung muss ein permanentes Gefälle von mind. 1 % aufweisen. Sollte es bei zu hohen Luftmengen zu Pfeifgeräuschen kommen, ist ein Siphon vorzusehen.

7.6.2 Mit Kondensatpumpe

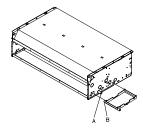

Bei vorhandener Kondensatpumpe muss die Steigleitung am Austritt der Kondensatpumpe beginnen. Ab dem Ende der Steigleitung ist ein permanentes Gefälle von mind. 1 % vorzusehen.

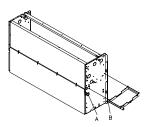
Ein erneuter Anstieg ist nicht möglich. Die maximale Höhe der Steigleitung entnehmen Sie bitte den technischen Daten.

Falsche Montage!

Richtige Montage! (Leitung abfallend verlegt)

Warnung!


Beim Anschluss mehrerer Geräte an eine Kodensatsammelleitung ist unbedingt ein Überbogen nach jeder Steigleitung vorzusehen.


7.7 Montage externe Kondensatwanne

Im Lieferumfang ist eine externe Kondensatwanne enthalten, welche das an der Wasseranschlussgruppe entstehende Kondensat in die Hauptkondensatwanne im Inneren des Gerätes leitet.

Diese ext. Kondensatwanne soll die schwierigen Isolierarbeiten an evtl. vorhandenen Ventilen vermeiden.

Trotzdem ist nach der Installation zu prüfen, ob alle relevanten Komponenten über dieser Wanne platziert sind. Sollte dies nicht der Fall sein, ist eine bauseitige Isolierung der betroffenen Teile erforderlich.

Achtung!

Je nach Installation kann es erforderlich sein, den Spalt zwischen externer Kondensatwanne und Gehäuse mit Silikon abzudichten um evtl. durchlaufendes Kondensat zurückzuhalten.

7.8 Elektrischer Anschluss

Die werkseitig eingebauten elektrischen Komponenten sind auf Klemmen geführt. Die nachfolgende Klemmleiste (im Kapitel 8.1 Schaltplan allgemein) zeigt alle je nach Zubehör vorhandenen Klemmen.

Hinweis!

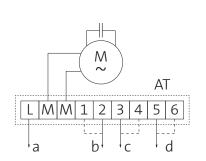
Für Zubehör, welches nicht vorhanden ist werden auch keine Klemmen installiert.

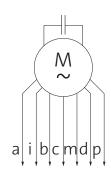
Tipp!

Wenn Sie elektrische Komponenten nachrüsten, bleiben Sie bei nachfolgenden Klemmenbezeichnungen, dies vereinfacht später die Arbeiten.

Warnung!

Von den installierten Transformatoren können Rückspannungen bis zu 500 V ausgehen.


Warnung!


Ohne Relaismodul (Master/Slave) dürfen nicht mehrere Geräte an einem Regelungsausgang geschalten werden.

Für die beiden Varianten von Ventilatoren gilt:

Werkseitig sind 3 Ventilatorstufen vorverdrahtet, welche entweder bei Bestellung spezifiziert wurden oder den Standard Luftmengen in den technischen Daten dieser Dokumentation entsprechen.

Sollte eine nachträgliche bauseitige Änderung der Ventilatorstufenbelegung notwendig sein, kann dies durch neuklemmen/umstecken an Transformator bzw. Ventilatormotor erfolgen.

Ader	010 -059		
а	Blau (Nullleiter)		
b1	Schwarz		
b2	Schwarz		
с3	Orange		
с4	Orange		
d5	Rot		
d6	Rot		
е	Gelb-Grün (Erdung)		
g	Stromkabel		
	Sommer = Kühlen		
	Winter = Heizen		

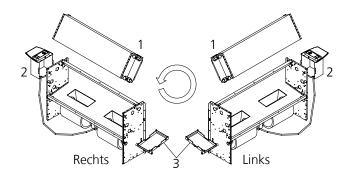
Ader	068 - 094		
а	Weiß (gemein)		
i	Schwarz		
b	Grau		
С	Blau		
m	Orange		
d	Braun		
р	Rot		
е	Gelb-Grün (Erdung)		
g	Stromkabel		
	Sommer = Kühlen		
	Winter = Heizen		

7.9 Bauseitige Änderung der Ventilatorstufenbelegung

Alle Schaltpläne können für sämtliche Baugrößen der Hotel-Gebläsekonvektoren GKH verwendet werden. Der einzige Unterschied liegt in der Verdrahtung der Ventilatorstufen des Motors.

Der Ventilatormotor der Baugrößen 010-059 ist einphasig und hat nur eine Drehgeschwindigkeit bei Neuspannung 230 V. Der vorgeschaltete Transformator ermöglicht den Ventilatormotor in 6 zur Wahl stehenden Ventilatorstufen zu betreiben.

Der Ventilatormotor der Baugröße 068-094 ist ebenfalls einphasig, realisiert die 6 Ventilatorstufen aber über 6 unterschiedliche Wicklungen im Ventilatormotor selbst.

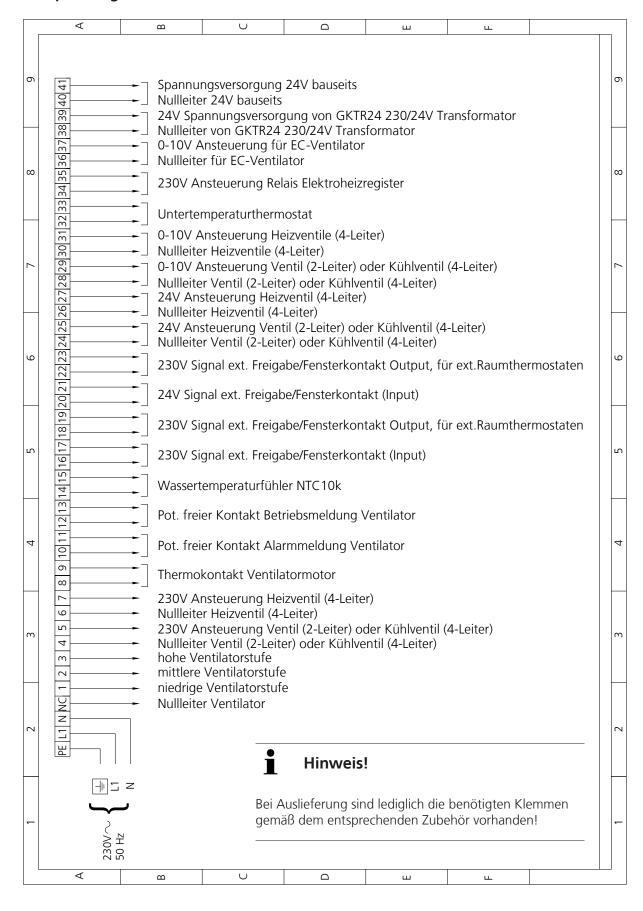


7.10 Bauseitige Änderung der Wasseranschlussseite

In manchen Fällen, kann aufgrund veränderter Anforderungen vor Ort die Änderung der geräteseitigen Wasseranschlussseite notwendig werden.

Folgende Arbeiten müssen hierfür erfolgen:

- Falls vorhanden, das Gehäuse des Gerätes abnehmen
- Falls vorhanden, die Ventilgruppe demontieren
- Die Befestigungsschrauben des Schaltkastens lösen und diesen auf der anderen Seite wieder festschrauben
- Die Zugangspaneele zum Wärmetauscher abnehmen
- Die Schrauben lösen, mit welchen der Wärmetauscher an den Seiten befestigt ist.
- Den Wärmetauscher diagonal nach oben herausnehmen
- Die benötigten Vorbohrungen heraustreiben
- Den Wärmetauscher wieder diagonal in die Vorbohrung einsetzen und festschrauben
- Die nun offenen und nicht mehr benötigten Öffnungen auf der Ursprungsseite mit Isoliert-/Dichtstoffen schließen
- Die Zugangspaneele wieder montieren
- Falls vorhanden, die Ventilgruppe wieder montieren
- Die externe Kondensatwanne unter die Ventilgruppe schrauben
- Falls vorhanden, das Gehäuse des Gerätes wieder anbauen.



- 1 Wärmetauscher
- 2 Schaltkasten
- 3 Externe Kondensatwanne

8. Schaltplan

8.1 Schaltplan allgemein

9. Inbetriebnahme

Die Inbetriebnahme des Gerätes hat durch den Ersteller oder einem von diesem benannten, autorisierten Sachkundigen zu erfolgen.

Dabei sind alle Regel-, Steuer- und Sicherheitseinrichtungen auf ihre Funktion zu überprüfen. Die Inbetriebnahme des Gerätes ist entsprechend der Bedienungsanleitung durchzuführen und zu dokumentieren.

Vorbereitende Maßnahmen:

- Füllen Sie die Anlage mit Wasser bzw. einem Gemisch aus Wasser und Glykol.
- Entlüften Sie die gesamte Anlage mit manuellen oder automatischen Entlüftern. Zur einfachen Entlüftung/ Entleerung sind die dafür notwendigen Messingverschraubungen von unten durch Wegklappen des Ausgangsgitters erreichbar und zu öffnen.
- Überprüfen Sie die Dichtigkeit der gesamten Anlage.
- Überprüfen Sie die korrekte Isolierung, aller sich in der Anlage befindlichen Leitungen und Ventile.
- Stellen Sie eingebaute Strangregulierventile auf die errechneten Mediumvolumenströme ein.
- Überprüfen Sie die Betriebsspannung der Geräte auf Übereinstimmung mit der Netzspannung.

Inbetriebnahme von Kühlkreisen:

Gehen Sie zur Inbetriebnahme folgendermaßen vor.

- Schalten Sie die Spannungsversorgung der ein.
- Schalten Sie das Innengerät über externe Regelung (Wandfernbedienung, Infrarotfernbedienung) ein.
- Stellen Sie die Solltemperatur niedriger ein als die vorhandene Raumtemperatur.
- Stellen Sie mit der Taste MODE den Modus COOL ein. Die vollständige Kühlleistung ist erst nach 3 bis 5 Minuten gegeben. Bei externer Regelung bitte den Kühlmodus aktivieren.
- Überprüfen Sie die Gerätesteuerung mit den im Abschnitt "Bedienung" beschriebenen Funktionen.
- Beachten Sie, dass bei einer Erhöhung der Solltemperatur oberhalb der Raumtemperatur die Ventilbaugruppe, die Mediumzufuhr und somit die Kühlleistung abschalten muss. Dieser Vorgang kann einige Minuten dauern.
- Messen Sie alle Betriebsströme und überprüfen Sie sämtliche Sicherheitsfunktionen.

- Prüfen Sie die Funktion von Schwimmerschalter, Kondensatwanne und Kondensatpumpe, indem Sie in die Kondensatwanne destilliertes Wasser gießen. Nutzen Sie hierzu die an des Gebläsekonvektors montierte Kondensatauffangwanne der Ventilbaugruppe.
- Beachten Sie, dass der Schwimmerschalter die Kondensatpumpe einschaltet, wenn der maximale Wasserstand in der Kondensatwanne bei ausgeschaltetem Innengerät erreicht.

Inbetriebnahme von Heizkreisen:

Gehen Sie zur Inbetriebnahme folgendermaßen vor:

- Schalten Sie die Pumpe und den Wärmeerzeuger ein.
- Schalten Sie die Spannungsversorgung der ein.
- Schalten Sie das Innengerät über die externe Regelung (Wandfernbedienung, Infrarotfernbedienung) ein.
- Stellen Sie die Solltemperatur h\u00f6her ein als die Raumtemperatur.
- Stellen Sie mit der Taste MODE den Modus HEAT ein. Liegt die Raumtemperatur unter der Solltemperatur, wird die Ventilbaugruppe aktiviert. Die vollständige Heizleistung ist erst nach 3 bis 5 Minuten gegeben. Bei externer Regelung bitte den Heizmodus aktivieren.
- Überprüfen Sie die Wärmeleistung des Innengerätes und die Ventilatorgeschwindigkeiten.
- Messen Sie alle Betriebsströme und überprüfen Sie sämtliche Sicherheitsfunktionen. Bei einer Reduzierung der Solltemperatur unter die Raumtemperatur muss die Ventilbaugruppe die Mediumzufuhr und somit die Heizleistung abschalten. Dieser Vorgang kann bis zu 5 Minuten dauern.

Warnung!

Vor dem endgültige Inbetriebsetzen des Gerätes ist der Kondensatablauf zu überprüfen. Das Kondensat sollte weitgehendst aus der inneren Kondensatwanne ablaufen!

10. Konformitätserklärung

Dieses Produkt trägt das **(€** -Kennzeichen, weil es mit folgenden Richtlinien und Normen übereinstimmt:

Maschinenrichtlinie 2006/42/EG

Richtlinie Elektromagnetische Kompatibilität 2004/108/EG

Niederspannrichtlinie 2006/95/EG

Sicherheit der Maschinen - Elektrische Ausrüstung für Maschinen EN 60204-1

Teil 1: Allgemeine Anforderungen

Elektromagnetische Verträglichkeit - Anforderungen an Haushaltsgräte, Elektro- EN 55014-1+A1+A2

werkzeuge und ähnliche Elektrogeräte

Teil1: Störaussendung

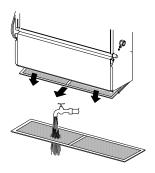
Sicherheit von Maschinen - Grundvorschriften EN ISO 12100-1,2

Teil 1: Grundsätzliche Terminologie, Methodologie

Teil 2: Technische Leitsätze

Sicherheit von Maschinen - Sicherheitsabstände gegen das Erreichen von EN ISO 13857

Gefährdungsbereichen mit den oberen und unteren Gliedmaßen


Sicherheit von Maschinen-Mindest-abstände zur Vermeidung des Quetschens EN 349-04 von Körperteilen

Gegebenenfalls kann die CE-Erklärung unter airblue@swegon.de oder in den einzelnen Regionalcentern angefragt werden.

11. Wartung

Um den funktionell einwandfreien und hygienisch bestmöglichen Betrieb einer technischen Anlage zu gewährleisten, ist eine regelmäßige Wartung zwingend erforderlich. Eine Wartung hat sowohl Einfluss auf die Lebenszeit eines Gerätes, wie auch auf die evtl. notwendige Gewährleistungsanerkennung. Der Hersteller/ Lieferant hat das Recht im Falle eines Gewährleistungsfalles nach einem Inbetriebnahme- und Wartungsprotokoll zu fragen.

Empfohlene Wartungsintervalle:

- Filterreinigung (mindestens alle 6 Monate)
- Reinigung der Kondensatwanne (mindestens alle 12 Monate)
- Ausführliche Funktionsprüfung (alle 12 Monate)

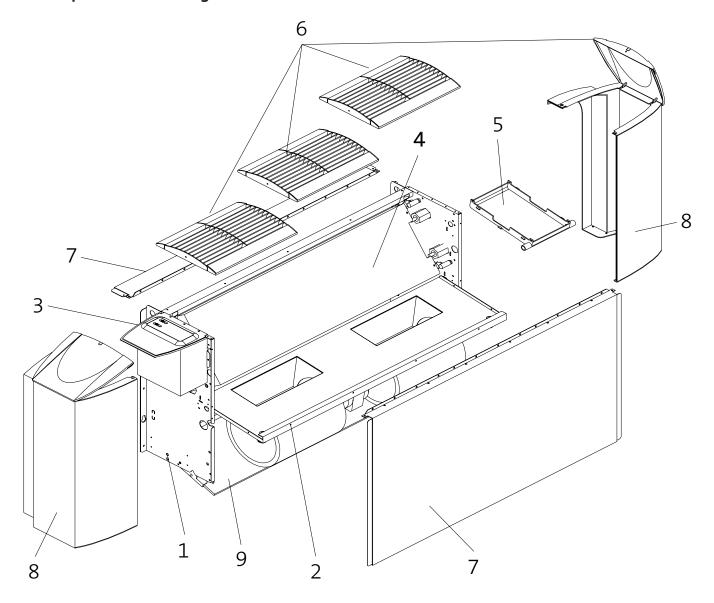
Je nach Gerät, Einsatzort und Verwendungszweck sind die oben aufgeführten Empfehlungen anzupassen.

Hinweis!

In bestimmten Fällen können gesetzliche Vorschriften ein anderes Wartungsintervall und einen anderen Wartungsumfang vorgeben, welche zwingend einzuhalten sind.

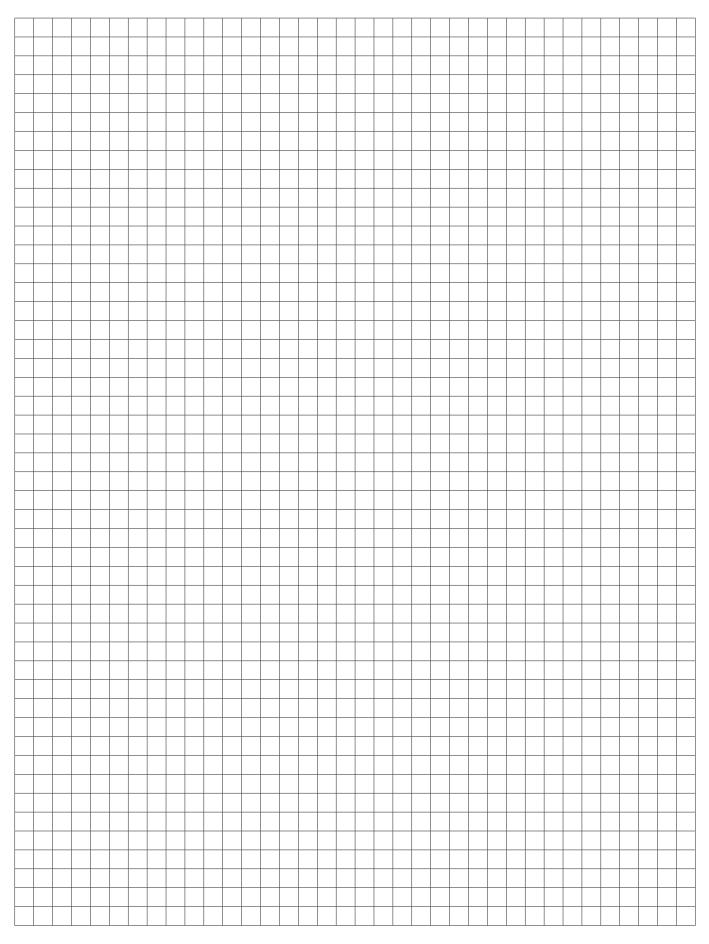
Der Hersteller/Lieferant des Gerätes ist weder für die ordnungs-gemäße Verwendung, noch für die ordnungsgemäße Wartung des Gerätes zuständig.

Auf Anfrage kann eine Wartung durch den Werkskundendienst durchgeführt werden. Wenden Sie sich hierfür bitte an Ihren Ansprechpartner.


12. Service

12.1 Störungsbehebung

Fehler	Prüfung	Weiteres Vorgehen
Lüfter geht nicht		
Gerät kühlt/heizt nicht		
Gerät macht Geräusche		
Wasser tritt aus		
	I and the second	I


12.2 Explosionszeichnungen

- 1 Interne Struktur
- 2 Ventilatoreinheit
- 3 Regelungsbox
- 4 Hauptregister
- 5 Zusatzliche Kondensatwanne
- 6 Abnehmbare Ausblasgitter und Seitendeckel
- 7 Frontplatte aus Metall
- 8 Seitenabdeckungen aus ABS
- 9 Filter

Notizen

Swegon Germany GmbHCarl-von-Linde-Straße 25, 85748 Garching-Hochbrück
Tel. +49 (0) 89 326 70 - 0, Fax +49 (0) 89 326 70 - 140 info@swegon.de, www.swegon.de