XHP: Pneumatic manual switch ## Areas of application Manual change-over of pneumatic signal lines. #### **Features** - Four stages - Can be built into panel or wall-/rail-mounted #### **Technical description** - k_V (water) = 0.11 m³/h - Nominal flow rate = 3 m³n/h | Туре | k_v-value
water ∆p = 1 bar | | Nominal flow Q _N 1 bar with respect to atmosphere | Weight
kg | |--|--|------------------------|--|--------------| | XHP 3 F001 0,11 m ³ /h | | 3,0 m³ _n /h | 0,03 | | | Max. leakage rate (2,5 ba | r → 0) | 1,2 l _n /h | Connection diagram | A03322 | | Permissible pressure | | | Dimension drawing | M297193 | | or differential pressure | | 2,5 bar | Fitting instructions | none | | Permissible ambient temp | erature | 070 °C | | | #### **Accessories** 0296936 000* Fixing bracket for rail EN 60715, 35×20.5 and 35×15 . 0296937 000* Fixing bracket for C-rail EN 60715-C 20 and for wall mounting. 0296990 000* Buckle-proof adaptor for screw-type installation, MV 7322. 0296218 000* Buckle-proof adaptor for push-on installation. *) Dimension drawing or wiring diagram are available under the same number | Universal scale
(enclosed) | 'Open-closed' scale
(fitted) | 'Manual-closed' scale
(rear) | Operation | |-------------------------------|---------------------------------|---------------------------------|---------------------| | 1 | ⊠⊠ closed | ⊠⊠ closed | Passage from 1 to 0 | | 2 | Aut. | Aut. | Passage from 2 to 0 | | 3 | ⊠ open | 54 | Passage from 3 to 0 | | 4 | Stop | Stop | No passage to 0 | ### Operation The dial turns on four O-rings and locks into one of four positions. ### **Further technical information** Flow rate at other pressures:- Δp = pressure difference (bar) p_2 = absolute pressure, non-pressure side (bar) $\mathbf{\mathring{V}}_{N}$ = nominal flow # **Connection diagram** # **Dimension drawing** ## **Accessories**